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Preface

The purpose of the book is to present statistical theory and biostatistical methods

and applications through a different approach than the one usually adopted by

conventional statistical texts.

First, the book integrates topics that, typically, are dealt with in separate books,

that is, it covers sampling methods, study design, and statistical methods in a single

book and is organized in short chapters structured according to the areas of

application of the statistical methods and relating the methods with the correspond-

ing study designs.

Second, and probably the most appealing aspect of the book, biostatistics are

presented in a strictly non-mathematical approach, emphasizing the rationale of

statistical theory and methods rather than mathematical proofs and formalisms.

Illustrations, working examples, computer simulations, and geometrical appro-

aches, rather than mathematical expressions and formulas, are used throughout the

book to explain every statistical method.

Third, the topics selected for this book cover most needs of clinical researchers,

regarding both study designs and statistical methods, considering the contents of the

current scientific literature. The reader will find an explanation of every statistical

method, from simple interval estimation and standard statistical tests to advanced

methods such as multiple regression, survival analysis, factor analysis, and meta-

analysis.

Fourth, the presentation of statistical theory is gradually built upon very simple

basic concepts, such as the properties of means and variances, the properties of

the normal distribution, and the central limit theorem. This will allow the reader

to understand the conditions required for the application and the limitations of

each method.

Therefore, this book will satisfy most needs of clinical researchers and medical

professionals, offering in a single volume a clear and simple explanation of over

90% of the statistical methods they are likely to find in scientific publications or are

likely to need in the course of their own research.

In addition, the book is written according to two skill levels, one for readers who

are interested only in understanding the methods and results presented in scientific

papers, and one for readers who also wish to know how calculations are done. Even

for these, no mathematical skills are required beyond the basic arithmetic

operations and an understanding of what square roots and logarithms are.



In conclusion, this book attempts to translate basic, intermediate, and even some

advanced statistical concepts into a language and an approach with which health

professionals feel comfortable. The topics have been selected according to their

relevance for the medical professions and are introduced from a non-mathematical

perspective in a sequence that makes sense to clinicians.

All the datasets used for illustration are from my own former research work.

Examples of computer outputs and many graphs were produced using Stata (Stata

Corporation, College Station, TX, USA).

Lastly, a word of appreciation to the many friends who have offered me

continual encouragement and support throughout this project, and in particular to

Ana Cristina and my sons Miguel and Ivan, to whom I dedicate this book.
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1

Introduction

1.1 The object of biostatistics

Biostatistics is a science that allows us to make abstractions from instantiated facts,

therefore helping us to improve our knowledge and understanding of the real world.

Most people are aware that biostatistics is concerned with the development of

methods and of analytical techniques that are applied to establish facts, such as the

proportion of individuals in the general population who have a particular disease.

The majority of people are probably also aware that another important application

of biostatistics is the identification of relationships between facts, for example,

between some characteristic of individuals and the occurrence of disease.

Consequently, biostatistics allows us to establish the facts and the relationships

among them, that is, the basic building blocks of knowledge.

Therefore, it can be said that it is generally recognized that biostatistics plays

an important role in increasing our knowledge of medical science, and health

professionals in their routine clinical practice make extensive use of statistical

information to reason about patients. When considering the likelihood of a given

disease, clinicians need to have a lot of information about the clinical picture,

diagnostic methods, treatment, prognosis, and prevention of that particular disease.

More specifically, physicians use statistical information like the proportion of

people in the general population who have that disease (the disease prevalence) or

the annual rate of disease episodes (the incidence), the frequency of symptoms and

physical signs in that disease (the clinical picture), the proportion of patients that

have abnormalities in selected diagnostic tests (the test sensitivity), and the

accuracy of each diagnostic test (the test specificity).

However, clinical practice is not just involved in understanding the cause of the

patients’ complaints. Clinical practice is largely involved in taking action to prevent,

correct, remedy, or cure diseases. But before each action is taken, a decision must

be made as to whether an action is required and which action will benefit the patient

Biostatistics Decoded, First Edition. A. Gouveia Oliveira.
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most. This, of course, is the most difficult part of clinical practice simply because

people can make decisions about alternative actions only if they can predict the

likely outcome of each action. In other words, to be able to make decisions about

the care of a patient, a clinician needs to be able to predict the future. And it is

precisely here that the central role of biostatistics in clinical practice resides.

Actually, biostatistics is the science that allows us to predict the future. How

is this accomplished? Simply by assuming that, for any given individual, the

expectation is that his or her features and behavior are the same, on average, as

those in the population to which the individual belongs. Therefore, once we know

the average features of a given population, we are able make a reasonable prediction

of the features of each individual belonging to that population.

Let us take a further look at how biostatistics allows us to predict the future

using, as an example, personal data from a nationwide survey of some 45 000

people in the population. The survey estimated that 27% of the population suffers

from chronic venous insufficiency (CVI) of the lower limbs. With this information

we can predict, for each member of the population, knowing nothing else, that this

person has a 27% chance of suffering from CVI. We can refine our prediction about

that person if we know more about the population. Figure 1.1 shows the prevalence

of CVI by gender and by age group. With this information we can predict, for

example, for a 30-year-old women, that she has a 40% chance of having CVI and

that in, say, 30 years she will have a 60% chance of suffering from CVI.

Health professionals constantly use statistical information to make predictions

that allow them to make good decisions. Some examples of such statistical infor-

mation are how the population responds to existing treatment options (treatment

efficacy), the proportion of patients that will experience adverse reactions to

treatments (treatment safety), the proportion of patients that will relapse after a
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Figure 1.1 Using statistics for predictions. Age- and gender-specific prevalence

rates of chronic venous insufficiency.
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successful course of treatment (prognosis), and how the patient population feels

about possible alternatives to care (treatment effectiveness).

Therefore, the key to prediction is knowing about individual characteristics and

disease and treatment outcomes in the population. So we need to study, measure,

and evaluate populations. This is a sensible conclusion, but not so easily

accomplished. The first difficulty is that, in practice, most populations of interest to

medical research have no material existence. One reason for this is that patient

populations are very dynamic entities. For example, the population of patients with

acute myocardial infarction, with flu, or with bacterial pneumonia is changing at

every instant, because new cases are entering the population all the time, while

patients resolving the episode or dying from it are leaving the population.

Therefore, at any given instant there is one population of patients, but in practice

there is no possible way to identify each and every member of the population.

The other reason is that the definitions of populations are based on medical

concepts, and usually there is no absolute way of determining whether a given

person truly belongs to the population. Therefore, for any individual there is

virtually always some uncertainty about whether he or she really belongs to the

population. For example, imagine a population like the diabetes mellitus popula-

tion. Which clinical criteria will identify a person with this disease? There is a

choice among a fasting blood glucose level measured once or several times with

some interval in between, a single casual blood glucose level, and an oral glucose

tolerance test. However, all these methods are known to have false positives and

false negatives. Therefore, there is always some amount of uncertainty as to

whether each individual actually has or does not have the disease.

The point here is that, in practice, there is no way we can identify and evaluate

all the individuals that belong to a given population. This is why we said that

populations have no actual physical existence and are only conceptual. So, if we

cannot study the whole population, what can we do? Well, the most we can do is to

study, measure, and evaluate a sample of the population. We then may use the

observations we made in the sample to estimate what the population is like. This is

what biostatistics is about, sampling. Biostatistics studies the sampling process and

the phenomena associated with sampling, and by doing so it gives us a method for

studying populations which are immaterial. Knowledge of the features and behavior

of a conceptual population allows us to predict the features and future behavior of

an individual patient belonging to that population and, thus, makes it possible for

the health professional to make informed decisions.

Biostatistics is involved not only in helping to create knowledge and to make

individual predictions, but also in measurement. Material things have weight and

volume and are usually measured with laboratory equipment, but what about things

that we know exist but have no weight, no volume, and cannot be seen? Pain, for

example. Well, one important area of research in biostatistics is on methods for the

development and evaluation of instruments to measure virtually anything we can

think of. This includes not just things that we know exist but are not directly

observable, like pain or anxiety, but also things that are only conceptual and have no

real existence in the physical world, such as the quality of life.

INTRODUCTION 3



In summary, biostatistics is concerned with the measurement of characteristics

(that may not even exist in our material world) in populations (that are virtual) to

enable us to predict the future.

1.2 Defining the population

Whenever we want to study a population, we need three basic things: a definition of

the population, a study design, and a sampling method.

In clinical research, the population is almost always defined in terms of a

recognized disease or condition and the definition of the population is, therefore,

mostly a clinical issue. It is of critical importance, however, that the criteria

enabling one to assign a given individual to the population being studied are

precisely defined. In other words, it is paramount to distinguish the conceptual

definition of the population from the operational definition, and in any study it is

necessary to establish the two definitions.

For example, a population definition such as ‘arterial hypertension’ corresponds

to a conceptual definition and its importance is that it allows one to immediately

grasp the scope of the study. However, in operational terms this definition is

worthless, since two investigators trying to identify subjects eligible for that

population might obtain different results simply by using their own criteria for

diagnosing hypertension.

On the other hand, if it had been agreed that the population included every

person with a sitting blood pressure above 140/90mmHg after 5minutes’ rest,

assessed with a digital sphygmomanometer placed on the right brachial artery, on

the average of two measurements made on three different occasions, there would be

no ambiguity in identifying those subjects who actually belong to that population.

We can delineate the main properties of a good definition as follows. First,

recognition, or the property of the definition to refer to a clinical condition

recognizable by the medical and scientific communities. Second, relevance, that is,

the definition should identify a population which is relevant from the clinical

standpoint. Finally, attributability, or the ability of the definition to allow one to

decide unambiguously whether or not a given individual belongs to the population

under study.

1.3 Study design

Once we have defined accurately the population of interest, we need to decide

which study design we will use. The study design is related to the specific aim of the

investigation, and we will go over this subject later on. For the moment, let us just

say that, among the large diversity of study designs, we can make a straightforward

classification of study types based on a simple notion: in clinical research, the

ultimate purpose of an investigation is to establish a cause–effect relationship.

This goal is actually implicit in any investigation – if we can discover what causes

an illness or a symptom, then possibly we will find a way to solve or prevent that

4 BIOSTATISTICS DECODED



illness or symptom – and it is the interest of the investigator on the management of a

disease that drives him or her to start a study. The different types of clinical studies

that we use are, in fact, successive steps in the way of establishing a causality

relationship (Figure 1.2).

The first step on the way to causality is, then, to gather whatever information we

can on the subject. We investigate patients presenting that problem, we analyze

blood and tissue samples, we do x-rays, CT scans, ultrasound examinations, and

whatever we believe will provide information on the patient’s condition. Then we

interpret and summarize the data and present it to others, usually in the form of a

clinical case or a case series. These could be called qualitative studies, and the

purpose of these investigations is mainly to define the more general aspects of the

problem, such as the clinical picture and evolution, the scope of the disease process,

and which organ systems appear to be involved.

Once we have some leads on a clinical problem, the next step will naturally be to

gather information in a systematic way. The initial qualitative studies have enabled us

to focus the problem, and have provided enough information to let us define the

population of interest. We can now conduct studies based on the systematic observation

of a larger number of people affected by the condition. We call these studies

descriptive studies. As a result of these studies, we will eventually have an almost

complete description of the condition, including its prevalence in the general

population, the frequency of the various symptoms and signs, its outcome, and so forth.

Now that we have a picture of the problem, the next question we ask ourselves is

what its causes are. This leads us to the question of how we establish causality. This

is a complex issue, but it is generally accepted that three conditions must be met for

establishing a cause–effect relationship. First, there must be evidence that a strong

association exists between a stimulus and an observed response, where a stimulus

may be something like an intervention or exposure to some product or environment.

Second, there must be an order factor, that is, there must be evidence that the

stimulus preceded the response.

Basic definition and structuring 
of the problem, description of 

the relevant features 
Qualitative Studies 

Further characterization of 
the problem through    

systematic observations 
Descriptive Studies 

Exploration of causality 
relationships through the   

investigation of associations 
Analytical Studies 

Gathering of evidence 
supporting a causality 

relationship 
Experimental Studies 

Figure 1.2 The path to causality. Types of research studies.
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These two conditions are quite obvious and deserve little comment. It is quite

clear that if a cause–effect relationship between any two things exists, then those

things must be associated and the cause must precede the response. Now the last

condition, although also quite obvious, is very often overlooked in clinical research.

The third condition is that there must be no other alternative explanation for the

response, within a reasonable degree of plausibility. This means that in scientific

research we must always consider all aspects of the problem and thoroughly search

for an explanation of the observed response, other than the stimulus under study,

often called a contaminant of the investigation. Only after careful consideration of

all the possible contaminants, and after systematically excluding them as

responsible for the observed response, can we presume a cause–effect relationship

with a reasonable degree of confidence.

Therefore, if we wish to understand the causes of a clinical condition, the next

logical step would be to investigate associations between the disease and a number of

stimuli. We do this with analytical studies, which are also called by a variety of other

names, including association studies. The same as descriptive studies mentioned

above, analytical studies are observational studies, that is, no intervention is carried

out on the study subjects. The main purpose of these studies is to identify which

factors are related to a disease, to its features, or to its outcome, because those factors

will be candidates for further evaluation by experimental studies.

Experimental studies are widely recognized as the most reliable means of

establishing a causality relationship. However, in special situations where an

association is so strong that it is hard to give an alternative and plausible

explanation for the observed effect, many scientists accept the establishment of

causality based only on analytical studies.

Experimental studies are designed to verify simultaneously the three conditions

for causality. In those studies, we apply an intervention and measure any response

occurring after the intervention to establish the order condition. To demonstrate that

there is an association between the intervention and the response, we compare the

observed responses to those obtained in controls that were not exposed to the

intervention. Finally, to avoid any contamination of the experiment, we conduct it

under highly controlled conditions. If a response is observed, and if we can exclude

contamination of the experiment, then theoretically we can establish causality with

reasonable confidence. Some analytical studies are interventional studies but they

are not experimental studies, in the sense that they will not be able to ascertain the

three conditions for causality. We will see later on this book that establishing

causality is not a simple task, as there are always many factors external to the

experiment that might explain the observed response. Some of them are, precisely,

the methods used to analyze the study data.

1.4 Sampling

The third thing to consider when planning a research study is the sampling method.

Sampling is such a central issue in biostatistics that an entire chapter of this book is
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devoted to discussing it. This is necessary for two main reasons: first, because an

understanding of the statistical methods requires a clear understanding of the

sampling phenomena; second, because most people do not understand at all the

purpose of sampling.

Sampling is a relatively recent addition to statistics. For almost two centuries,

statistical science was concerned only with census, the study of entire populations.

Nearly a century ago, however, people realized that populations could be studied

more easily, faster, and more economically if observations were used from only a

small part of the population, a sample of the population, instead of the whole

population. The basic idea was that, provided a sufficient number of observations

were made, the patterns of interest in the population would be reproduced in the

sample. The measurements made in the sample would then mirror the measure-

ments in the population.

This approach to sampling had, as a primary objective, to obtain a miniature

version of the population. The assumption was that the observations made in the

sample would reflect the structure of the population. This is very much like going to

a store and asking for a sample taken at random from a piece of cloth. Later, by

inspecting the sample, one would remember what the whole piece was like. By

looking at the colors and patterns of the sample, one would know what the colors

and patterns were in the whole piece (Figure 1.3).

Now, if the original piece of cloth had large, repetitive patterns but the sample

was only a tiny piece, by looking at the sample one would not be able to tell exactly

what the original piece was like. This is because not every pattern and color would

be present in the sample, and the sample would be said not to be representative

of the original cloth. Conversely, if the sample was large enough to contain all

the patterns and colors present in the piece, the sample would be said to be

representative (Figure 1.4).

This is very much the reasoning behind the classical approach to sampling. The

concept of representativeness of a sample was tightly linked to its size: large

samples tend to be representative, small samples give unreliable results because

The purpose of sampling is 
to obtain a ‘miniature’ of the 
population - observations 
made in the sample mirror 
the structure of the 
population 

Sample 

Population 

Figure 1.3 Classical view of the purpose of sampling.
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they are not representative of the population. The fragility of this approach,

however, is its lack of objectivity in the definition of an adequate sample size.

Some people might say that the sample size should be in proportion to the total

population. If so, this would mean that an investigation on the prevalence of, say,

chronic heart failure in Norway would require a much smaller sample than the same

investigation in Germany. This makes little sense. Now suppose we want to

investigate patients with chronic heart failure. Would a sample of 100 patients with

chronic heart failure be representative? What about 400 patients? Or do we need

1000 patients? In each case, the sample size is always an almost insignificant

fraction of the whole population, since in mainland Portugal, for example, the

estimates are that about 300 000 people suffer heart failure.

If it does not make much sense to think that the ideal sample size is a certain

proportion of the population, even more so because in many situations the

population size is not even known, would a representative sample then be the

one that contains all the patterns that exist in the population? If so, how many

people will we have to sample to make sure that all possible patterns in the

population also exist in the sample? For example, some findings typical of

chronic heart failure, like an S3-gallop and alveolar edema, are present in only 2

or 3% of the patients, and the combination of these two findings (assuming they

are independent of each other) should exist in only 1 out of 2500 patients. Does

this mean that no study of chronic heart failure with less than 2500 patients

should be considered representative? And what happens when the structure of

the population is unknown?

The problem of the lack of objectivity in defining sample representativeness can

be circumvented if we adopt a different reasoning when dealing with samples. Let

us accept that we have no means of knowing what the population structure truly is,

and all we can possibly have is a sample of the population. Then, a realistic

procedure would be to look at the sample and, by inspecting its structure, formulate

a hypothesis about the structure of the population. The structure of the sample

constrains the hypothesis to be consistent with the observations.

non- 
representative representative excessive 

The concept of 

representativeness is 
closely related to the 

sample size 

Figure 1.4 Relationship between representativeness and sample size in the

classic view of sampling. The concept of representativeness is closely related to

the sample size.
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Taking the above example on the samples of cloth, the situation now is as if we

were given a sample of cloth and asked what the whole piece would be like. If the

sample were large, we probably would have no difficulty answering that question.

But if the sample were small, something could also be said about the piece. For

example, if the sample contained only red circles over a yellow background, one

could say that the sample probably did not come from a Persian carpet. In other

words, by inspecting the sample one could say that it was consistent with a number

of pieces of cloth but not with other pieces (Figure 1.5).

Therefore, the purpose of sampling is to provide a means of evaluating the

plausibility of several hypotheses about the structure of the population, through a

limited number of observations and assuming that the structure of the population

must be consistent with the structure of the sample. One immediate implication of

this approach is that there are no sample size requirements in order to achieve

representativeness.

Let us verify the truth of this statement and see if this approach to sampling is

still valid in the extreme situation of a sample size of one. We know that with the

first approach we would discard such a sample as non-representative. Will we reach

the same conclusion with the current approach?

1.5 Inferences from samples

Imagine a swimming pool full of small balls. The color of the balls is the attribute

we wish to study, and we know that it can take only one of two possible values:

black and white. The problem at hand is to find the proportion of black balls in the

population of balls inside the swimming pool. So we take a single ball out of the

pool and imagine that such a ball happened to be black (Figure 1.6). What can we

say about the proportion of black balls in the population?

The purpose of sampling is the evaluation of the plausibility of a 
hypothesis about the structure of the population, considering the 
structure of a limited number of observations 

Sample 

plausible 

Population  

implausible

Figure 1.5 Modern view of the purpose of sampling. The purpose of sampling is

the evaluation of the plausibility of a hypothesis about the structure of the

population, considering the structure of a limited number of observations.

INTRODUCTION 9



We could start by saying that it is perfectly possible that the population consists

100% of black balls. We could also say that it is also quite plausible that the

proportion of black balls is, say, 80% because then it would be quite natural that, by

taking a single ball at random from the pool, we would get a black ball. However, if

the proportion of black balls in the population is very small, say less than 5%, we

would expect to get a white ball, rather than a black ball. In other words, a sample

made up of a black ball is not very consistent with the hypothesis of a population

with less than 5% of black balls. On the other hand, if the proportion of black balls

in the population is between 5 and 100%, the result of the sampling is quite

plausible. Consequently, we would conclude that the sample was consistent with a

proportion of black balls in the swimming pool between 5 and 100%. The inference

we would make from that sample would be to estimate as such the proportion of

black balls, with a high degree of confidence.

You can say that this whole thing is nonsense, because such a conclusion is

completely worthless. Of course it is, but that is because we did not bother spending

a lot of effort in doing the study. If we wanted a more interesting conclusion, we

would have to work harder and collect some more information about the population.

That is, we would have to make some more observations to increase sample size.

Before going into this, think for a moment about the previous study. There are

three important things to note. First, this approach to sampling still works in the

extreme situation of a sample size of one, while that is not true for the classical

approach. Second, the conclusion was correct (remember, it was said that one was

very confident that the proportion of black balls in the population was a number

between 5 and 100%). The problem with the conclusion, better said with the study,

was that it lacked precision. Third, the inference procedure described here is valid

only for random samples of the population, otherwise the conclusions may be

completely wrong. Suppose that the proportion of black balls in the population is

minimal, but because their color attracts our attention we are much more likely to

select a flashy black ball than a boring white one. We would then make the same

Studied attribute: color  
Attribute values: black and white. 
Sample size: 1 
Sampling result: 

Hypotheses about the structure of the population: 

Conclusion: this sample is consistent with a proportion of black balls  
in the population of, say, 5 to 100%. 

possible (p=20%) possible (p=60%) unlikely (p=5%) 

Figure 1.6 Interpretation of the result of sampling.
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reasoning as before and reach the same conclusion, but we would be completely

wrong because the sample was biased toward the black balls.

Suppose now that we decide to take a random sample of 60 balls, and that we

have 24 black balls and 36 white balls (Figure 1.7). The proportion of black balls in

the sample is, therefore, 40%. What can we say about the proportion of black balls

in the population? Well, we can say that if the proportion is below, say, 25%, there

should not be so many black balls in a sample of 60. Conversely, we can also say

that if the proportion is above, say, 55%, there should be more black balls in the

sample. Therefore, we would be confident in concluding that the proportion of

black balls in the swimming pool must be somewhere between 25 and 55%. This is

a more interesting result than the previous one because it has more precision; that is,

the range of possibilities is narrower than before. If we need more precision, all we

have to do is to increase the sample size.

Let us return to the situation of a sample size of one and suppose that we want to

estimate another characteristic of the balls in the population, for example, the

average weight. This characteristic, or attribute, has an important difference from

the color attribute, because weight can take many different values, not just two.

Let us see if we can apply the same reasoning in the case of attributes taking

many different values. To do so, we take a ball at random and measure its weight.

Let us say that we get a weight of 60 grams. What can we conclude about the

average weight in the population?

Now the answer is not so simple. If we knew that the balls were all about the

same weight, we could say that the average weight in the population should be a

value between, say, 50 and 70 grams. If it were below or above those limits, it

would be unlikely that a ball sampled at random would weigh 60 grams.

Attribute values: black and white
Sample size: 60 
Sampling result: 24            36               

Conclusion: this sample is consistent with a proportion of black 
balls in the population of 0.25 to 0.55. 
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Figure 1.7 Interpretation of the result of sampling.
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However, if we knew that the balls varied greatly in weight, we would say that

the average weight in the population should be a value between, say, 40 and 80

grams (Figure 1.8). The problem here, because now we are studying an attribute

that may take many values, is that for making inferences about the population

we also need information about the amount of variation of that attribute in the

population. It thus appears that this approach does not work well in this extreme

situation. Or does it?

Suppose we take a second random observation and now have a sample of two.

The second ball weighs 58 grams, and so we are compelled to believe that balls in

this population are relatively homogeneous regarding weight. In this case, we could

say that we were quite confident that the average weight of balls in the population

was between 50 and 70 grams. If the average weight were under 50 grams, it would

be unlikely that we would have two balls with 58 and 60 grams in the sample; and

similarly if the average weight were above 70 grams. So this approach works

properly with a sample size of two, but is this situation extreme? Yes it is, because

in this case we need to estimate not one but two characteristics of the population,

the average weight and its variation, and it is only normal that it is now required to

have at least two observations.

In summary, in order that the modern approach to sampling be valid, sampling

must be at random. The representativeness of a sample is primarily determined by

the sampling method used, not by the sample size. Sample size determines only the

precision of the population estimates obtained with the sample.

Now, if sample size has no relationship to representativeness, does this mean

that sample size has no influence at all on the validity of the estimates? No it does

not. Sample size is of importance to validity because large sample sizes offer

protection against accidental errors during sample selection and data gathering,

which might have an impact on our estimates. Examples of such errors are selecting

Studied attribute: weight            Sample size: 1  
Attribute values: infinite             Sampling result: 60g 
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Figure 1.8 Interpretation of the result of sampling.
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an individual who does not actually belong to the population under study,

measurement errors, transcription errors, and missing values.

Where do we go from here? Well, we have already eliminated a lot of

subjectivity by putting the notion of sample representativeness within a

convenient framework. Now we must try to eliminate the remaining subjectivity

in two other statements. First, we need to find a way to determine, objectively and

reliably, the limits for population proportions and averages that are consistent

with the samples. Second, we need to be more specific when we say that we are

confident about those limits. Terms like confident, very confident, or quite

confident lack objectivity, so it would be very useful if we could express

quantitatively our degree of confidence in the estimates. But before going into

this, we have to review some basic statistical concepts.
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2

Basic concepts

2.1 Data reduction

The intermediate result of any clinical investigation is typically a large set of

numeric and coded data. If we take a look at the data, we will immediately realize

that it is virtually meaningless to us. Contrary to the written word, which we can

read, abstract, and understand immediately, we have no such ability when it comes

to a list of numbers. So, in order to understand the information contained in such

lists of numbers we need to compress the data into just a few numbers, trying to lose

as little information as we can.

One commonly used method of data compression is to average all observations,

by summing all the values of an attribute and dividing the total by the number of

observations. The average, or mean, gives us an immediate grasp of the order of

magnitude of the values, but unfortunately its use is limited to values measured on a

numeric scale. Such an approach would not work with an attribute measured in

categories, such as profession.

The first thing we must do when we evaluate the results of a clinical study is,

therefore, to abstract the data. To do that, we must first identify the scale of

measurement used with each attribute in the dataset, and then we must decide

which is the best method for summarizing the data.

2.2 Scales of measurement

We may measure patient characteristics, or attributes, with many scales, but these

will usually fall into one of four types.

The simplest scale is the binary scale, which has only two values. Patient

gender (female, male) is an example of an attribute measured in a binary scale.

Everything that has a yes/no answer (e.g., obesity, previous myocardial infarction,

Biostatistics Decoded, First Edition. A. Gouveia Oliveira.
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family history of hypertension, etc.) is being measured in a binary scale. Very often

the values of a binary scale are not numbers but terms, and this is why the binary

scale is also a nominal scale. However, the values of any binary attribute can

readily be converted to 0 and 1. For example, the attribute gender with values

female and male can be converted to the attribute female gender with values 0

meaning no and 1 meaning yes.

Next in complexity is the categorical scale. This is simply a nominal scale with

more than two values. In common with the binary scale, the values in the

categorical scale are usually terms, not numbers, and the order of those terms is

arbitrary: the first term in the list of values is not necessarily smaller than the

second. Arithmetic operations with categorical scales are meaningless, even if the

values are numeric. Examples of attributes measured on a categorical scale are

profession, race, and education.

It is important to note that in a given person an attribute can have only a single

value. However, sometimes we see categorical attributes that seem to take several

values for the same person. Consider, for example, an attribute called cardiovas-

cular risk factors with values arterial hypertension, hypercholesterolemia, diabetes

mellitus, obesity, and tabagism. Obviously, a person can have more than one risk

factor and this attribute is called a multi-valued attribute. This attribute, however,
is just a compact presentation of a set of related attributes grouped under a heading

that is commonly used in data forms. For analysis, these attributes must be

converted into binary attributes. In the example, cardiovascular risk factors is the

heading, while arterial hypertension, hypercholesterolemia, diabetes mellitus,

obesity, and tabagism are binary variables that take the values 0 and 1.

When values can be ordered, we have an ordinal scale. In the particular case

when all the consecutive values in the scale are at the same distance, we call that an

interval scale (Figure 2.1). An example of an ordinal scale is the staging of a tumor

(stage I, II, III, IV). There is a natural order of the values, since stage II is more

invasive than stage I and less than stage III. However, one cannot say that the

difference, either biological or clinical, between stage I and stage II is larger or

smaller than the difference between stage II and stage III. This is an important thing

to remember about ordinal scales: differences between values are meaningless.

Ordinal 

Interval 

1 2 3 4 5 6 7 8 9 10 0 

1 2 3 4 5 6 7 8 9 10 0 

Figure 2.1 Difference between an ordinal and interval scale.
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Attributes measured in ordinal scales are often found in clinical research.

Figure 2.2 shows three examples of ordinal scales: the item list, where the subjects

select the item that more closely corresponds to their opinion, the Likert scale,

where the subjects read a statement and indicate their degree of agreement, and the

visual analogic scale where the subjects mark on a 100mm line the point that they

feel corresponds to their assessment of their current state. Psychometric, attitudinal,

quality of life, and, in general, many questionnaires commonly used in clinical

research have an ordinal scale of measurement.

Interval scales are very common in research and in everyday life. Examples of

attributes measured in interval scales are age, height, blood pressure, most clinical

laboratory results, and so forth. Some interval-measured attributes are continuous,
for example, height, while others are not continuous and they are called discrete.

Examples of discrete attributes are counts, like the leukocyte count. Because all

values in the scale are at the same distance from each other, we can perform

arithmetic operations on them. We can say that the difference between, say, 17 and

25 is of the same magnitude than between, say, 136 and 144.

If an interval scale has a meaningful zero, it is called a ratio scale. Examples of

ratio scales are height and weight. An example of an interval scale that is not a ratio

scale is the Celsius scale, where zero does not represent the absence of temperature,

but rather the value that was by convention given to the temperature of thawing ice.

In ratio scales, not only are sums and subtractions possible, but also multiplication

Item list 

Compared to last month, today you feel: 
          much worse 
          worse 
          no change 
          better 
          much better 

Likert scale: 

Today I feel much better than last month: 

Strongly                                                         Strongly 
disagree                                                             agree 
1                 2                   3                    4                 5   

Visual analogic scale: 

How do you feel today? Place a vertical mark in the line 
below to indicate how you feel today  

Worst 
imaginable  

Best 
imaginable  

Figure 2.2 Examples of commonly used ordinal scales.
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and division, although the latter two operations are meaningless in non-ratio scales.

For example, we can say that a weight of 21 g is half of 42 g, and a height of 81 cm

is three times 27 cm, but we cannot say that a temperature of 40 �C is twice as warm

as 20 �C. In practical data analysis, however, we often make no distinction between

interval and ratio scales, or continuous and discrete variables.

It is important to note that the simple inspection of the values of an attribute

does not allow us to decide which scale was used. We must know what was being

measured. Take, for example, the results of a written examination presented on a

scale of 0 to 100, all questions having the same score. Now, what kind of scale was

used? Well, that depends on what was being measured. If the teacher was measuring

the number of correct answers, than it must be an interval scale: a student with a

score of, say, 68 had twice the number of correct answers than a student with a score

of 34. However, if the teacher was trying to evaluate the knowledge of the students,

then it is probably an ordinal scale. The difference in knowledge between a student

with 30 and a student with 40 is normally much smaller than the difference in

knowledge between a student with 85 and a student with 95.

2.3 Tabulations of data

Now that we can identify the scales of measurement of each attribute, let us see how

we can compress the data. One simple method is the tabulation of the data, whereby

we make a list of all the different values found in the dataset and, in front of each

one, we write down the number of times it occurred. This is called the absolute

frequency of each value. In order to improve readability, it is customary to also

write down the number of occurrences of each value as a percentage of the total

number of values, the relative frequency.

When we look at a table, such as the ones shown in Figure 2.3, we are

evaluating how the individual values are distributed in our sample. Such a display of

data is called a frequency distribution.

Tabulations of data with absolute and relative frequencies are the best way of

presenting binary and categorical data. Tables are a very compact means of data

presentation, and tabulation does not involve any significant loss of information.

male 
female 

Total 

Gender 

15 
45 

60 

n 

25.0 
75.0 

100.0 

% Location 

fundus 
body 

antrum 
pylorus 

Total 

n 

 3 
26 
43 
13 

85 

% 

    3.5 
  30.6 
  50.6 
  15.3 

100.0 

Binary data Categorical data 

Figure 2.3 Tabulation of nominal data.
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We can also use tables for ordinal and interval data, provided the number of

different values is not too large. In those tables we present the values in ascending

order and write down the absolute and relative frequencies, as we did with binary

and categorical data. For each value we can also add the cumulative frequency, or

the percentage of values in the dataset that are equal to or smaller than that value. If

the number of values is large, then it is probably better to group the values into

larger intervals, as in Figure 2.4, but this will lead to some loss of information.

If an attribute has been measured on an ordinal or interval scale, there are other

ways of presenting the data that are much more compact than tables, although

generally there is a greater loss of information. These are commonly called central

tendency measures, and the ones most used are the mean, the median, and the mode.

2.4 Central tendency measures

The mean is a very common measure of central tendency. We use the notion of

mean extensively in everyday life, so it is not surprising that the mean plays an

extremely important role in statistics. Furthermore, being a sum of values, the mean

is a mathematical quantity and therefore amenable to mathematical processing. This

is the other reason why it is such a popular measure in statistics.

As a measure of central tendency, however, the mean is valid only when the

values are symmetrically distributed about its value. This is not the case with a

number of attributes we study in biology and medicine – they often have a large

number of small values and a few very large values. In this case, the arithmetic

mean is not a good measure of central tendency, since a large number of values will

be on one side of the mean and a small number of values will be on the other side. A

better measure of central tendency is, in these cases, the median.

The median is the quantity that divides the sample into two groups with an equal

number of observations: one group has all the values smaller than that quantity, and

the other group has all the values greater than that quantity. The median, therefore, is

a quantity that has a straightforward interpretation: half the observations are smaller

than that quantity. Actually, the interpretation of the median is exactly the same as

the mean when the values are symmetrically distributed about the mean and, in this

Interval data with grouping 

Age (years) n % 

20-29 
30-39 
40-49 
50-59 
60-69 

Total 

 3 
6 
12 
12 
27 

60 

  5.0 
10.0 
20.0 
20.0 
45.0 

100.0 

cumulative 

   5.0 
  15.0 
  35.0 
  55.0 
100.0 

100.0 

Figure 2.4 Tabulation of ordinal and interval data.
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case, the mean and median will have the same value. With asymmetric distributions

such as the ones noted above, however, the median will be smaller than the mean.

One problem with the median is that it is not a mathematical result. To calculate

the median, we must count the number of observations, as we do to compute the

mean. Then we must sort all the values in ascending or descending order, divide the

number of observations by 2, and round the result to the nearest integer. Then we

take this result, go to the observation that occupies that position in the sorted order,

and obtain the value of that observation. The value is the median value. Further, if

the number of observations is even, then we must take the value of the observation

that has a rank in the sorted order equal to the division of the number of

observations by 2, then add that value to the value of the next observation in the

sorted order, and divide the result by 2 to finally obtain the median value.

The median, therefore, requires an algorithm for its computation. This makes it

much less amenable to mathematical treatment than the mean and, consequently,

less useful. In many situations, however, the median is a much better measure of

central tendency than the mean. For example, attributes that are measured

on ordinal scales – recall that with ordinal scales sums and differences are

meaningless – should almost always be summarized by the median, not the mean.

One possible exception to this rule is when an ordinal scale has so many distinct

values, say, more than 50, that we can assume that we are measuring a continuous

attribute with a somewhat faulty instrument in which the measurement error varies

slightly across the range of values, as if we were measuring lengths with a metric

tape in which the marks were erased in some sections so we have to take an

approximate reading in those sections. In such a case, it would appear that the

attribute had been measured in an ordinal scale while it has actually been measured

in an interval scale. This is why we often see data obtained with some clinical

questionnaires presented and analyzed as if it were interval data.

The last central tendency measure is the mode. The mode is simply the most

common value of an attribute. It has the advantage over the other measures of central

tendency in that it can be used with all types of scales of measurement, including

categorical scales. The mode, however, has many disadvantages and this is why it is

seldom used in clinical research. One important problem with the mode is that there

is no guarantee that it is a unique value. The most frequent values of an attribute may

occur with the same frequency, and then we will have several modes. In addition, in

very small samples, each value may occur only once and we will have as many

modes as values. No further mention will be made to the mode throughout this book.

2.5 Measures of dispersion

Central tendency measures are a drastic method of data abstraction, whereby a large

number of values are condensed into just one quantity, but at the cost of a severe

loss of information. Consider a list of numbers: one obvious characteristic of the list

will be the degree of heterogeneity of the values, and it would be important to have

at least some information about that heterogeneity. In other words, simple
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inspection of the mean will not tell us anything about whether all the values are very

close to the mean or whether they are largely spread about the mean. In order to

keep that information, and in the spirit of central tendency measures, measures of
dispersion have been developed.

As with the central tendency measures, there are a number of available

measures of dispersion, each one having some useful properties and some short-

comings. As noted above, the basic idea when selecting a data reduction measure

must always be to lose as little information as possible.

One possible way of expressing the degree of dispersion of individual values

could be to write down the limits, that is, the minimum and maximum values. One

good thing about this approach is that it is easy to interpret. If the two values are

similar then the dispersion is small, otherwise it is large. There are a few bad things,

though. First, we will have to deal with two quantities, which is not very practical.

Second, the limits are very unstable, in the sense that if one adds a dozen

observations to a study, it will most probably be necessary to redefine the limits.

This is because, as one adds more observations, the more extreme values will have a

greater chance of appearing.

The first problem can be solved by using the difference between the maximum

and minimum values, a quantity commonly called the range, but this will not solve
the problem of instability.

The latter problem can be minimized if, instead of using the minimum and

maximum values to describe the dispersion, we use the lower and upper quartiles.

The lower quartile (also called the 25th percentile) is the value below which is one-

quarter, or 25%, of all the values in the dataset. The upper quartile (or 75th percentile)

is the value below which lie three-quarters, or 75%, of the values in the dataset (note,

incidentally, that the median is the same as the 50th percentile). The advantage of the

quartiles over the limits is that they are more stable because the addition of one or two

extreme values to the dataset will probably not change the quartiles.

However, we still have the problem of having to deal with two values, which is

certainly not as practical and easy to remember and reason with if we had just one

value. One way around this could be to use the difference, the upper quartile minus

the lower quartile, to describe the dispersion. This is called the interquartile range,

but the interpretation of this value is not straightforward: it is not amenable to

mathematical treatment and therefore it is not a very popular measure, except

perhaps in epidemiology.

2.6 Compressing data

Before moving on to more adequate measures of dispersion, let us look at an

illustration of the measures of dispersion presented in the previous sections. As noted

earlier, the central idea is to describe a whole set of values, losing as little information

as possible. Can this actually be achieved? This example will show that it does.

For this illustration we used a patient attribute with complete random values and

created a graph with the frequency distribution of those values. We are in a position
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of assuring that the values were completely random because that attribute was

simply the patient chart number.

The result was the graph shown in the top half of Figure 2.5. This type of graph

is called a histogram. The histogram is a bar chart with the bars adjacent to each

other, which is an adequate way of designing a bar graph for grouped continuous

variables.

The dataset included 309 patients, so we had 309 observations on that attribute.

We computed a set of descriptive statistics, namely, the median, range, and lower

and upper quartiles, whose values are also shown in the figure. Then we used only

those values to create the graph in the bottom half of Figure 2.5, that is, what we

could say about the frequency distribution if all we had were those descriptive

statistics.

Now when we compare the two graphs we will see that, although the dataset

was compressed from 309 to 6 values (a 2% compression rate), the loss of

information was actually relatively small. This example shows us that describing

observations:   309 
median:            3927 
range:              24–8947 
percentile 25:    2037 
percentile 75:    5012 
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Figure 2.5 Data abstraction by descriptive statistics.

22 BIOSTATISTICS DECODED



the data by summary measures is an efficient and adequate method of summarizing

information.

2.7 The standard deviation

Let us now consider other measures of dispersion. Another possible measure could

be the average of the deviations of all individual values about the mean or, in other

words, the average of the differences between each value and the mean of the

distribution. This would be an interesting measure, being both a single value and

easy to interpret, since it was an average. Unfortunately, it would not work because

the differences from the mean in those values smaller than the mean are positive,

and the differences in those values greater than the mean are negative. The result, if

the values were symmetrically distributed about the mean, would always be close to

zero regardless of the magnitude of the dispersion.

Actually, what we want is the average of the size of the differences between the

individual values and the mean. We do not really care about the direction (or sign)

of those differences. Therefore, we could use instead the average of the absolute

value of the differences between each value and the mean. This quantity is called

themean deviation. It satisfies the desired properties of a summary measure: single

value, stability, and interpretability. The mean deviation is easy to interpret because

it is an average, and people are used to dealing with averages. If we were told that

the mean of some patient attribute is 256mmol/L and the mean deviation is

32mmol/L, we could immediately figure out that about half the values were in the

interval 224 to 288mmol/L, that is, 256� 32 to 256þ 32.

There is a small problem, however. The mean deviation uses absolute values,

and absolute values are quantities that are difficult to manipulate mathematically.

Actually, they pose so many problems that it is standard mathematical practice to

square a value when one wants the sign removed. Let us apply that method to the

mean deviation. Instead of using the absolute value of the differences about the

mean, let us square those differences and average the results. We will get a quantity

that is also a measure of dispersion. This quantity is called the variance. The way to

compute the variance is, therefore, first to find the mean, then subtract each value

from the mean, square the result, and add all those values. The resulting quantity is

called the sum of squares about the mean, or just the sum of squares. Finally, we

divide the sum of squares by the number of observations to get the variance.

Because the differences are squared, the variance is also expressed as a square

of the attribute’s units, something strange, like mmol2/L2. To put things right we

have to convert these awkward units into the original units by taking the square root

of the variance. This new result is also a measure of dispersion and is called the

standard deviation.

As a measure of dispersion, the standard deviation is single valued and stable,

but what can be said about its interpretability? Let us see: the standard deviation is

the square root of the average of the squares of the differences between individual

values and the mean. It is not easy to understand what this quantity really
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represents. However, the standard deviation is the most popular of all measures of

dispersion. Why is that?

One important reason is that the standard deviation has a large number of

interesting mathematical properties, but this probably will not be very reassuring.

The other important reason is that, actually, the standard deviation has a

straightforward interpretation, very much along the lines given earlier to the value

of the mean deviation. Unfortunately, we cannot go into this right now, because in

order to understand what it might mean, we first have to go over some facts. But

before we proceed to the next section, let us review the methods of data abstraction:

� Recall that the ideaofusingsummarystatistics is todisplay thedata inaneasy-to-

grasp format while losing as little information as possible.

� Beginbyunderstandingwhat scaleofmeasurementwasusedwitheachattribute.

� If thescale isbinaryorcategorical, theappropriatemethod is tabulation, andboth

the absolute and relative frequencies should always be displayed.

� If the scale is ordinal, the mean and standard deviation should not be presented,

which would be wrong because arithmetic operations are not allowed with

ordinal scales; instead, present themedian andoneormoreof the othermeasures

of dispersion. In the medical literature, the limits seem to be most popular.

� If the scale is interval, the mean and the standard deviation should be presented

unless the distribution is very asymmetrical about the mean. In this case, the

median and the limits may provide a better description of the data.

A final word is in order on the standard deviation. In most statistical packages

the standard deviation is computed differently from the way explained above, in that

the sum of squares is not divided by the number of observations (n), but by the

number of observations minus one (n� 1). In some packages and hand calculators,

we have the option of selecting either method. The standard deviation with the n

divisor is usually called the sample standard deviation, while the standard

deviation with the n� 1 divisor is called the population standard deviation. As a

rule, you should use the n� 1divisor throughout.

2.8 The n� 1 divisor

The reason why we use the n� 1 divisor instead of the n divisor for the sum of

squares when we calculate the variance and the standard deviation is because,

when we present those quantities, we are implicitly trying to give an estimate

of their value in the population. Now, since we use the data from our sample to

calculate the variance, the resulting value will always be smaller than the value

of the variance in the population. We say that our result is biased toward a

smaller value. What is the explanation for that bias?
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Remember that the variance is the average of the squared differences

between individual values and the mean. If we calculated the variance by

subtracting the individual values from the true mean (the population mean), the

result would be unbiased.

This is not what we do, however. We subtract the individual values from the

mean computed from our sample and, because of this, the mean occupies a central

position among all the data values. Since the sample mean is the quantity closest

to all the values in the dataset, individual values are more likely to be closer to the

sample mean than to the population mean. Therefore, the value of the sample

variance tends to be smaller than the value of the population variance.

It is an easy mathematical exercise to demonstrate that dividing the sum of

squares by n� 1 instead of n provides an adequate correction of that bias.

However, the same thing can be shown by the small experiment illustrated in

Figures 2.6 and 2.7.

Using a computer’s random number generator, we obtained random

samples of a variable with variance equal to 1. This is what is called the

population variance of that variable. Starting with samples of size 2, we

obtained 10 000 random samples and computed their sample variances using

the n divisor. Next, we computed the average of those 10 000 sample variances

and retained the result. We then repeated the procedure with samples of size 3,

4, 5, and so on up to 100.

The plot of the averaged value of sample variances against sample size is

represented by the solid line in Figure 2.6. It can be clearly seen that, regardless

of the sample size, the variance calculated with the n divisor is on average less

than the population variance, and the deviation from the true variance increases

as the sample size decreases.
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Figure 2.6 The n divisor of the sum of squares.
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Now let us repeat the procedure, exactly as before, but this time using the

n� 1 divisor. The plot of the average sample variance against sample size is

shown in Figure 2.7. The solid line is now exactly over 1, the value of the

population variance, for all sample sizes.

This experience clearly illustrates that, contrary to the sample variance

using the n divisor, the sample variance using the n� 1 divisor is an unbiased

estimator of the population variance.

2.9 Properties of means and variances

Means and variances have some interesting properties that deserve mention.

Knowledge of some of these properties will help you when you are analyzing your

data, and they will be required sometimes in the following sections. Regardless,

they all are intuitive and easy to understand. An illustration is also provided.

With a computer, we generated random numbers between 0 and 1, representing

observations from a continuous attribute with uniform distribution, which we will

call variable A. This attribute is called a random variable because it can take any

value from a set of possible distinct values, each with an associated probability. In

this case, variable A can take any value from the set of real numbers between 0 and

1, all with equal probability. Hence the probability distribution of variable A is

called the uniform distribution.

A second variable, called variable B, with uniform distribution but with values

between 0 and 2, was also generated. The histograms are shown in Figure 2.8. Let

us now see what happens to the mean and variance when we perform arithmetic

operations on a random variable.
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Figure 2.7 The n� 1 divisor of the sum of squares.

26 BIOSTATISTICS DECODED



When a constant amount is added to, or subtracted from, the values of a random

variable, the mean will, respectively, increase or decrease by that amount but the

variance will not change. This is illustrated in Figure 2.9, left graph, which shows

the distribution of variable A plus 2. This result is obvious, because, as all values are

increased (or decreased) by the same amount, the mean will also increase (or

decrease) by that amount and the distance of each value to the mean will thus

remain the same, keeping the variance unchanged.

When a constant amount multiplies, or divides, the values of a random variable,

the mean will be, respectively, multiplied or divided by that amount, and the

variance will be, respectively, multiplied or divided by the square of that amount.

Therefore, the standard deviation will be multiplied or divided by the same amount.

Figure 2.9, middle graph, shows the distribution of A multiplied by 2. As an

example, consider the attribute height with mean 1.7 meters and standard deviation

0.6 meters. If we want to convert the height to centimeters, we multiply all values

by 100. Now the mean will of course be 170 cm and the standard deviation 60 cm.

Thus, the mean was multiplied by 100 and the standard deviation also by 100 (and,

therefore, the variance was multiplied by 1002).

When observations from two independent random variables are added or

subtracted, the mean of the resulting variable will be the sum or the subtraction,

respectively, of the means of the two variables. In both cases, however, the variance of

F
ra

ct
io

n  

0 1 2 3 
0 

.05 

.10 

.15 

A 

Distribution of variable A Distribution of variable B 

F
ra

ct
io

n 

0 1 2 3 
0 

.05 

.10 

.15 

B 

Figure 2.8 Two random variables with uniform distribution.

Distribution of A +2 

F
ra

ct
io

n  

0 1 2 3 
0 

.05 

.10 

.15 

A+2 

Distribution of A x 2 

F
ra

ct
io

n  

0 1 2 3 
0 

.05 

.10 

.15 

A x2 

Distribution of A +B 

F
ra

ct
io

n  

0 1 2 3 
0 

.05 

.10 

.15 

A + B 

Figure 2.9 Properties of means and variances.

BASIC CONCEPTS 27



the new variablewill be the sum of the variances of the two variables. The right graph in

Figure 2.9 shows the result of adding variables A and B. The first result is easy to

understand, but the second is not that evident, so wewill try to show it by an example.

Suppose we have two sets of strips of paper of varying length. We take one strip

from each set and glue them at their ends. When we have glued together all the pairs

of strips, we will end up with strips that have lengths that are more variable. This is

because, in some cases, we added long strips to long strips, making them much

longer than average, and added short strips to short strips, making them much

smaller than average. Therefore, the variation of strip length increased. Now, if

instead of adding the two strips of paper we cut a variable amount from each strip,

we will eventually make large cuts in short strips and small cuts in large strips,

again increasing variation.

Note that this result will not hold if the variables are not independent, that is, if

they are correlated. Taking the example above, if we decided to always make large

cuts in long strips and small cuts in short strips, we would end up with a smaller

variance. If we did it the other way around, the final variance would be much larger

than the sum of the two variances.

2.10 Common frequency distributions

In the discussion on measures of dispersion, it was mentioned that many attributes

measured in interval scales had their values symmetrically distributed about the

mean. Let us investigate some patient attributes to evaluate how common this

pattern is.

Figure 2.10 presents several histograms showing the frequency distribution of

several commonly assessed clinical laboratory variables measured in interval scales,

obtained from a sample of over 400 patients with hypertension.

Notice not only that all distributions are approximately symmetrical about the

mean, but also that the very shape of the histograms is strikingly similar. In all of

them, the frequency of the individual values is highest near the middle, declining

smoothly from there and at the same rate on each side.

Actually, if we went around taking some kind of interval-based measurements

(e.g., length, weight, concentration) from samples of any type of biological

materials and plotted them in a histogram, we would find this shape almost

everywhere. This pattern is so repetitive that it has been compared to familiar

shapes, like bells or Napoleonic hats.

In other circumstances, outside the world of mathematics, people would say that

we have here some kind of natural phenomenon. It seems as if some law, of physics

or whatever, dictates the rules that variation must follow. This would imply that the

variation we observe in everyday life is not chaotic in nature, but actually ruled by

some universal law. If this were true, and if we knew what that law says, perhaps we

could understand why, and especially how, variation appears.

Let us concentrate on investigating this phenomenon and, for the moment, let us

not think about how we can make use of it. That will be evident in the next sections.
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So, what would be the nature of that law and is it known already? Yes it is,

and it is actually very easy to understand how it works. Let us conduct a little

experiment to see if we can create something whose values have a bell-shaped

distribution pattern.

2.11 The normal distribution

Consider some attribute that may take only two values, say 1 and 2, and that those

values occur with equal frequency. Technically speaking, we say a random

variable taking values 1 and 2 with equal probability; this is the probability

distribution for that variable (see Figure 2.11, upper part). Consider also four

variables that behave exactly like this, that is, they have the same probability

distribution. Now let us create a fifth variable that is the result of adding all four

variables together. Can we predict what will be the probability distribution of

this variable?

We can, and the result is also presented in Figure 2.11. We simply write down

all the possible combinations of values of the four equal variables and see in each

case what the value of the fifth variable is. If all four variables have value 1, the fifth

variable will have value 4. If three variables have value 1 and one has value 2, the

fifth variable will have value 5. This may occur in four different ways – either the

first variable had the value 2, or the second, or the third, or the fourth. If two

variables have the value 1 and two have the value 2, then the sum will be 6, and this

may occur in six different ways. If one variable has value 1 and three have value 2,

the result will be 7 and this may occur in four different ways. Finally, if all four

variables have value 2 the result will be 8 and this can occur in only one way.
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Figure 2.10 Frequency distributions of some biological variables.
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So, of the 16 different possible ways or combinations, in one the value of the

fifth variable is 4, in four it is 5, in six it is 6, in four it is 7, and in one it is 8. If now

we graph the relative frequency of each of these results, we obtain the graph shown

in the lower part of Figure 2.11. This is the graph of the probability distribution of

the fifth variable. Do you recognize the bell shape?

If we repeat the experiment with not two but a much larger number of variables,

the variable that results from adding all those variables will have not just five

different values but many more. Consequently, the graph will be smoother and more

bell shaped. The same will happen if we add variables taking more than two values.
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If we have a very large number of variables, then the variable resulting from

adding those variables will take an infinite number of values and the graph of its

probability distribution will be a perfectly smooth curve. This curve is called the

normal curve. It is also called the Gaussian curve from the German mathemati-

cian Karl Gauss who described it.

This is the explanation of why so many biological attributes, or variables,

have a normal distribution. It is reasonable to think that many biological attributes

are the result of a large number of independent factors added together, each one

making a small contribution to the final value of the attribute. If the normal curve

arises whenever we add a large number of identically distributed variables, then it

should not be surprising that those biological variables will have a normal

distribution.

However, it must be said that it is actually of no great importance to us, as far as

biostatistics is concerned, whether biological attributes have a normal distribution

or not. The important fact is that the normal distribution arises from the sum of

variables with identical distribution. We will see shortly how the whole theory of

sampling was built upon this simple fact.

2.12 The central limit theorem

What was presented in the previous section is known as the central limit theorem.

This theorem simply states that the sum of a large number of independent variables

with identical distribution has a normal distribution. The central limit theorem plays

a major role in statistical theory, and the following experiment illustrates how the

theorem operates.

With a computer, we generated random numbers between 0 and 1, obtaining

observations from two continuous variables with the same distribution. The

variables had a uniform distribution, which is a distribution where all values occur

with exactly the same probability.

Then, we created a new variable by adding the values of those two variables and

plotted a histogram of the frequency distribution of the new variable. The procedure

was repeated with three, four, and five identical uniform variables. The frequency

distributions of the resulting variables are presented in Figure 2.12.

Notice that, the more variables we add together, the more the shape of the

frequency distribution approaches the normal curve. The fit is already fair for the

sum of four variables. This result is a consequence of the central limit theorem.

2.13 Properties of the normal distribution

The normal distribution has many interesting properties, but we will present just a

few of them. They are very simple to understand and, occasionally, we will have to

call on them further on in this book.

First property: The normal curve is a function solely of the mean and the

variance. In other words, given only a mean and a variance of a normal

BASIC CONCEPTS 31



distribution, we can find all the values of the distribution and plot its curve using

the equation of the normal curve (technically, that equation is called the

probability density function). This means that in normally distributed attributes

we can describe its distribution entirely by using only the mean and the variance

(or equivalently the standard deviation). This is the reason why the mean and the

variance are called the parameters of the normal distribution, and what makes

these two summary measures so important. It also means that if two normally

distributed variables have the same variance, then the shape of their distribution

will be the same; if they have the same mean, their position on the horizontal

axis will be the same.

Second property: The sum or difference of normally distributed independent

variables will result in a new variable with a normal distribution. According to the

properties of means and variances, the mean of the new variable will be,

respectively, the sum or difference of the means of the two variables, and its

variance will be the sum of the variances of the two variables (Figure 2.13).

Third property: The sum, or difference, of a constant to a normally distributed

variable will result in a new variable with a normal distribution. According to the

properties of means and variances, the constant will be added to or subtracted from

its mean, and its variance will not change (Figure 2.13).

Fourth property: The multiplication, or division, of the values of a normally

distributed variable by a constant will result in a new variable with a normal
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distribution. Because of the properties of means and variances, its mean will be

multiplied, or divided, by that constant and its variance will be multiplied, or

divided, by the square of that constant (Figure 2.13).

Fifth property: In all normally distributed variables, irrespective of their

means and variances, we can say that two-thirds of the observations have a

value lying in the interval defined by the mean minus one standard deviation to

the mean plus one standard deviation (Figure 2.14). Similarly, we can say that

95% of the observations have a value lying in the interval defined by the mean

minus two standard deviations to the mean plus two standard deviations. The

relative frequency of the observations with values between the mean minus

three standard deviations and the mean plus three standard deviations is about

99%, and so on. This means that if we know that an attribute, for example,

height, has a normal distribution with a population mean of 170 cm and a

standard deviation of 20 cm, then we also know that the height of about 66%

of the population is 150 to 190 cm, and the height of 95% of the population is

130 to 210 cm.

Recall what was said earlier, when we first discussed the standard deviation: that

its interpretation was easy but not evident at that time. Now we can see how to

interpret this measure of dispersion. In normally distributed attributes, the standard

deviation and the mean define intervals corresponding to a fixed proportion of the

observations. This is why summary statistics are sometimes presented in the form of

mean� standard deviation (e.g., 170� 20), which, incidentally, is not appropriate

and may confuse those who are not familiar with the notation.

We also have ways of calculating the relative frequency of values of a normal

variable lying in whatever interval we specify. This can be done manually with

statistical tables, or by using statistical software.
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2.14 Statistical tables

Given any variable with a normal distribution, we can estimate the proportion of

observations with values lying within a specified interval by consulting a statistical

table of the normal distribution. The table displays the proportion of observations

on a variable with a normal distribution that exceed a specified value.

From the properties of the normal distribution, we know that the proportion of

observations between intervals defined in terms of the distance to the mean

measured in number of standard deviations is the same for all normal distributions.

Therefore, statistical tables have been created where these proportions are

tabulated in relation to the values of a measure of the distance from the mean,

expressed by the number of standard deviations (up to two decimal places). This

measure is called the standard normal deviate. Hence, a value of, say, 2.3 for the

standard normal deviate means a distance from the mean equal to the value of 2.3

standard deviations.

For example, if an attribute has mean 12 and standard deviation 4, then the value

18 is 1.5 standard deviations above the mean. We reached this conclusion simply by

first subtracting the value of the mean from 18 and then dividing the result by the

standard deviation. If now we look at the statistical table for the number 1.5, we can

see that the corresponding proportion is 0.0668, that is, 6.68% of the observations

on that variable exceed the value 18.

In order to obtain a more compact display, these tables are typically presented as

tables with two entries. One entry is the value of the standard normal deviate up to

the first decimal place, and the other entry is the second decimal place. The desired

proportion is read at the intersection of the two quantities.

Relative frequency of the observations lying in intervals 
defined by the number of standard deviations (SD) away 
from each side of the mean. 

66 % 
95 % 
99 % 

Figure 2.14 Relationship between the area under the normal curve and the

standard deviation.
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Figure 2.15 shows a fragment of a statistical table of the normal distribution.

The graph on the upper left tells us that the tabulated values represent the proportion

of observations exceeding a given value. Note that tables may differ from the one

presented, some tables displaying instead the proportion of observations smaller

than a given value.

Continuing with the same variable, if we wanted to know the proportion of

observations greater than, say, 13.84 we would first calculate the difference to the

mean, which is 13.84� 12¼ 1.84, which means that value is at 0.46 standard

deviations (¼ 1.84/4) above the mean. Then, we would find in the first column of

the table the value 0.4, and look in the first row for the second decimal place (0.06).

At the intersection of the two we would read off the value 0.3238, which means that

32.38% of the observations are more than 0.46 standard deviations above the mean

and, thus, exceed the value 13.84.

Because the normal distribution is symmetrical about the mean, the proportion

of observations that are more than 0.46 standard deviations above the mean is the

same as the proportion of observations that are more than 0.46 standard deviations

below the mean. Therefore, there really is no need to tabulate all the values of the

standard normal deviate and most tables actually only present proportions for values

above the mean.

A more common use of statistical tables, as we will see later on, is to work the

other way around, that is, to find the value that is exceeded by a pre-specified

proportion of observations. For example, suppose the mean body height in a

population is 160 cm and the standard deviation is 12 cm and that we wish to find

how tall are the tallest 5% of the population. First we look in the statistical table for

the tabulated value of 5% and we find the value 0.0505, which is very near 5%.

Then, we sum the z-values of the corresponding column and row (see Figure 2.16).

The sum is 1.64, meaning that the height of the tallest 5% is more than 1.64

z 

Table A1     Areas in the tail of the normal distribution 

0.04 0.05 0.06 0.07 0.08 0.09 

0.4840 0.4801 0.4761 0.4721 0.4681 0.4641 
0.4443 0.4404 0.4364 0.4325 0.4286 0.4247 
0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 
0.3669 0.3632 0.3594 0.3557 0.3520 0.3483 
0.3300 0.3264 0.3238 0.3192 0.3156 0.3121 

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776 
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451 

z 0.00 0.01 0.02 0.03 

0.0 0.5000 0.4960 0.4920 0.4880 
0.1 0.4602 0.4562 0.4522 0.4483 
0.2 0.4207 0.4168 0.4129 0.4090 
0.3 0.3821 0.3783 0.3745 0.3707 
0.4 0.3446 0.3409 0.3372 0.3336 

Figure 2.15 Statistical table of the normal distribution.
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standard deviations higher than the mean height. Then, the height of the tallest 5%

is over 160 cmþ 1.64� 12 cm¼ 179.68 cm.

In statistical notation, the proportion of observations in a probability distribution

exceeding a given value is named a, and the notation for the corresponding number

of standard deviations away from the mean is za. In this example, a¼ 0.05 and

za¼ 1.64. If we wanted to know the height of the shortest 5%, then a¼ 0.05 and

za¼� 1.64 and the height would be 160 cm� 1.64� 12 cm¼ 140.32 cm.

Sometimes we want to find the values exceeded, in both directions, by a given

proportion of the population, for example, by 15% of the population. We first have

to halve this proportion because we are looking for the height of the tallest 7.5%

and of the shortest 7.5%. So we search for the tabulated value a¼ 0.075 and we

find 0.0749, corresponding to za/2¼ 1.44. Therefore, the a¼ 15% extreme heights

are more than 1.44 standard deviations on either side of the mean, that is,

160� 17.28 cm.

z

Table A1     Areas in the tail of the normal distribution 

0.04 0.05 0.06 0.07 0.08 0.09 

0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 
0.0749 0.0735 0.0721 0.0708 0.0694 0.0681 

0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 
0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 
0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 

1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294 
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 

z 0.00 0.01 0.02 0.03 

1.3 0.0968 0.0951 0.0934 0.0918 
1.4 0.0808 0.0793 0.0778 0.0764 

1.5 0.0668 0.0655 0.0643 0.0630 
1.6 0.0548 0.0537 0.0526 0.0516 
1.7 0.0446 0.0436 0.0427 0.0418 

Figure 2.16 Statistical table of the normal distribution.
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3

Statistical inference

3.1 Sampling distributions

Now that we have all the basic information we need, we can return to the discussion

on sampling and on how we can speak about the characteristics of a population

after inspecting a random sample from it.

For the moment, let us restrict our discussion to the situation of interval

variables. Therefore, consider that we have a number of observations on an interval-

scaled attribute, body weight for example, from a random sample of a defined

population. We have the individual measurements, and we have collapsed them into

two summary statistics, the mean and the standard deviation.

The first thing we must discuss is: exactly what do we want to know about the

population? Recall from the published studies you have read that the authors seem

to be interested only in the mean. This may look confusing to us, because we know

that the variation is also an important element in the description of an attribute, but

you probably have never read a paper where the authors were interested in esti-

mating the variance in the population. Why, then, all this focus on the mean?

One answer is because we want to be able to make predictions on individual

patients, and our best guess as to which value of an attribute a patient might have

will be the most frequent value in the population to which the patient belongs. That

value is, of course, the population mean.

Another reason is because we know that biological attributes are virtually

always influenced by a number of factors that contribute to their variation.

Therefore, the mean may be seen as the true value of an attribute, and the variation

as a sign of the presence of factors of variation influencing that attribute. We will

see later on in this book that there are methods that allow us to identify those factors

and even estimate how much they contribute to the final value of the attribute. For

now, we will concentrate on estimating the mean value of an attribute in the

population.

Biostatistics Decoded, First Edition. A. Gouveia Oliveira.
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Let us consider the real situation: all we have is a mean obtained from a random

sample of the population. Now, in considering sample means, it is not reasonable to

expect the sample mean to have exactly the same value as the population mean,

other than by an amazing coincidence. It is also easy to realize that, if we take two

random samples with the same sample size from the same population, their means

will not have the same value. In order for them to be the same, the sum of all the

observations would have to be exactly the same in both samples, since the mean is

the sum of all observations divided by the sample size. This, again, would be an

amazing coincidence.

There is another explanation for sampling variation: we can view a sampling

process as a measurement of the value of the population mean using a method that

has a random measurement error. Because of this measurement error, the reading

we have, that is, the sample mean, does not correspond to the exact value of the

population mean and, because the error is random, each time we try to measure the

population mean we get a different value.

Consequently, the sample means behave as a random variable. If this is so, then

the sample means must have a probability distribution. The question now is: What

is the probability distribution of the sample means? Is it a known distribution? Can

this distribution be described by parameters?

In order to investigate these questions, we could perform a simple experiment

on sampling. With the help of a computer’s random number generator, we created

samples of observations on a random variable. For this experiment we created

samples of 60 observations from a variable with a uniform distribution. Then, we

calculated the means of these samples and plotted them on a histogram. The result

is shown in Figure 3.1.

The result is very interesting. The shape of the distribution of the sample means

looks very similar to the shape of the normal distribution. Actually, it can be

demonstrated that the distribution of sample means is the normal distribution,

whatever the distribution of the variable under study might be, on the condition that

Distribution of the means of samples of 60 observations 
from a random variable with uniform distribution 

Means of samples of size 60 

Figure 3.1 Distribution of sample means of large samples.
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the observations are mutually independent and the sample size is large. How large

samples must be is not absolutely defined, but most statisticians would agree that

with a sample size above 40 we may be confident that the distribution of sample

means will be very nearly normal.

In the case of small samples, however, the means will also have a normal

distribution, provided the attribute has a normal distribution. This is illustrated in

Figure 3.2, showing the distribution of samples of size 2 from a random variable

with a normal distribution.

If the distribution of the variable is not normal, or if its distribution is unknown,

we cannot assume that the sample means have a normal distribution. In these cases,

we simply do not know how sample means behave.

3.2 The normal distribution of sample means

The reason for the pattern of variation of sample means observed in the previous

section can be easily understood.

We know that a mean is calculated by summing a number of observations on a

variable and dividing the result by the number of observations. Normally, we look at

the values of an attribute as observations from a single variable. However, we could

very well view each single value as an observation from a distinct variable, with all

variables having an identical distribution. For example, suppose we have a sample

of size 100. We can think that we have 100 independent observations from a single

random variable, or we can think that we have single observations on 100 variables,

all of them with identical distribution. What would be the consequences of that?

In this perspective, a sample mean would correspond to the sum of a large

number of observations from variables with identical distribution, each observation

being divided by a constant amount which is the sample size. Under these

Distribution of the means of samples of 2 observations 
from a random variable with normal distribution 

Means of samples of size 2 

Figure 3.2 Distribution of sample means of small samples of attributes with a

normal distribution.
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circumstances, the central limit theorem applies and, therefore, we must conclude

that the sample means have a normal distribution, regardless of the distribution of

the attribute being studied.

Because the normal distribution of sample means is a consequence of the central

limit theorem, certain restrictions apply. According to the theorem, this result is valid

only under two conditions. First, there must be a large number of variables. Second,

the variables must be mutually independent. Transposing these restrictions to the case

of sample means, this implies that a normal distribution can be expected only if there

is a large number of observations, and if the observations are mutually independent.

In the case of small samples, however, the means will also have a normal

distribution provided the attribute has a normal distribution. This is not because of

the central limit theorem, but because of the properties of the normal distribution. If

the means are sums of observations on identical normally distributed variables, then

the sample means have a normal distribution whatever the number of observations,

that is, the sample size.

3.3 The standard error of the mean

We now know that the means of large samples may be defined as observations from

a random variable with a normal distribution. We also know that a normal

distribution is completely characterized by its mean and variance. The next step in

the investigation of sampling distributions, therefore, must be to find out whether

the mean and variance of that variable can be determined.

We can conduct an experiment simulating a sampling procedure. With the help

of a computer’s random number generator, we can create a random variable with

normal distribution with mean 0 and variance 1. Incidentally, this is called a

standard normal variable. Then, we obtain a large number of random samples of

size 4 and calculate the means of those samples. Next, we calculate the mean and

standard deviation of the sample means. We repeat the procedure with samples of

size 9, 16, and 25. The results of the experiment are shown in Figure 3.3.

As expected, as the variable we used had a normal distribution, the sample

means also have a normal distribution. We can see that the average value of the

sample means is, in all cases, the same value as the population mean, that is, 0.

However, the standard deviations of the values of sample means are not the same in

all four experiments. In samples of size 4 the standard error is 0.50, in samples of

size 9 it is 0.33, in samples of size 16 it is 0.25, and in samples of size 25 it is 0.20.

If we look closer at these results, we will realize that those values have

something in common. Thus, 0.50 is 1 divided by 2, 0.33 is 1 divided by 3, 0.25 is 1

divided by 4, and 0.20 is 1 divided by 5. Now, can you see the relation between the

divisors and the sample size, that is, 2 and 4, 3 and 9, 4 and 16, and 5 and 25? The

divisors are the square root of the sample size and 1 is the value of the population

standard deviation. This means that the standard deviation of the sample means is

equal to the population standard deviation divided by the square root of the sample

size. Therefore, there is a fixed relationship between the standard deviation of the
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sample means of an attribute and the standard deviation of that attribute, where the

former is equal to the latter divided by the square root of the sample size.

In the next section we will present an explanation for this relationship, but for

now let us consolidate some of the concepts we have discussed so far.

The standard deviation of the sample means has its own name of standard

error of the mean or, simply, standard error. If the standard error is equal to the

population standard deviation divided by the square root of the sample size, then the

variance of the sample means is equal to the population variance divided by the

sample size.

Now we can begin to see why people tend to get confused with statistics. We

have been talking about different means and different standard deviations, and

students often become disoriented with so many measures. Let us review the

meaning of each one of those measures.

There is the sample mean, which is not equal in value to the population mean.

Sample means have a frequency distribution whose mean has the same value as the

population mean. Authors of statistics books often, but not always, refer to the value

of the sample mean by the letter m, and to the value of the population mean by the

letter m, the letter ‘m’ in Greek.

Next, there is the sample standard deviation, which is not equal in value to the

population standard deviation. Sample means have a distribution whose standard

deviation, also known as standard error, is different from the sample standard

deviation and from the population standard deviation. In statistics books we will

often find the sample standard deviation represented by the letter s, and the
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Figure 3.3 Distribution of sample means of different sample sizes.
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population standard deviation by the letter s, which is the letter ‘s’ in Greek. There

is no specific notation for the standard error.

Then there is the sample variance, which is also not equal to the population
variance. These quantities are usually represented by the symbols s2 and s2, res-

pectively. Sample means also have variance, which is the square of the standard error,

but the variance of sample means has neither a specific name, nor a specific notation.

From all of the above, we can conclude the following about sampling

distributions:

� Sample means have a normal distribution, regardless of the distribution of the

attribute, but on the condition that they are large.

� Small samples have a normal distribution only if the attribute has a normal

distribution.

� Themean of the samplemeans is the same as the populationmean, regardless of

the distribution of the variable or the sample size.

� The standard deviation of the sample means, or standard error, is equal to the

population standard deviation divided by the square root of the sample size,

regardless of the distribution of the variable or the sample size.

� The above results are valid only if the observations in the sample are mutually

independent.

3.4 The value of the standard error

Let us continue to view, as in Section 3.2, the mean value of a large sample as

the sum of single observations from a large number of independent, identically

distributed variables.

As we saw before, according to this view the means of large samples are a

random variable that results from the sum of a large number of identically

distributed independent variables. Therefore, according to the central limit

theorem, the sample means must have a normal distribution.

The mean and variance of each of these identical variables are, of course,

the same as the population mean and variance, respectively m and s2. When we

calculate sample means we sum all observations and divide the result by the

sample size. This is exactly the same as if, before we summed all the

observations, we divided each one by the sample size. If we represent the

sample mean by m, each observation by x, and the sample size by N, what was

just said can be represented by

m ¼ x1 þ x2 þ � � � þ xn

N
¼ x1

N
þ x2

N
þ � � � þ xn

N

This is the same as if every one of the identical variables was divided by a

constant amount equal to the sample size. From the properties of means, we
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know that if we divide a variable by a constant, its mean will be divided by the

same constant. Therefore, the mean of each x/N is equal to the population mean

divided by N, that is, m/N.

Now, from the properties of means we know that if we add independent

variables, the mean of the resulting variable will be the sum of the means of the

independent variables. Sample means result from adding together N variables,

each one having a mean equal to m/N. Therefore, the mean of the resulting

variable will be N�m/N¼m, the population mean. The conclusion, then, is

that the distribution of sample means m has a mean equal to the population

mean m.

Now, what about the variance of sample means? We saw above that, to

obtain a sample mean, we divide every single identical variable x by a

constant, the sample size N. Therefore, according to the properties of

variances, the variance of each identical variable x/N will be equal to the

population variance s2 divided by the square of the sample size, that is,

s2/N2. Sample means result from adding together all the x. Consequently,

the variance of the sample mean is equal to the sum of the variances of all

observations, that is, N times the population variance divided by the square

of the sample size, or N� s2/N2. This is equivalent to s2/N, that is, the

variance of sample means is equal to the population variance divided by

the sample size. Therefore, the standard deviation of sample means (the

standard error of the mean) equals the population standard deviation divided

by the square root of the sample size.

Do not forget that these properties of means and variances only apply in the

case of independent variables. Therefore, the results presented above will also

only be valid if the sample consists of mutually independent observations. On

the other hand, these results have nothing to do with the central limit theorem

and, therefore, there are no restrictions related to the normality of the

distribution or to the sample size. Actually, whatever the distribution of the

attribute and the sample size might be, the mean of the sample means will

always be the same as the population mean, and the standard error will always

be the same as the population standard deviation divided by the square root of

the sample size, provided that the observations are independent. The problem is

that, in the case of small samples from an attribute with unknown distribution,

we cannot assume that the sample means will have a normal distribution.

Therefore, knowledge of the mean and of the standard error will not be

sufficient to completely characterize the distribution of sample means.

3.5 Inferences from means

We are now in a position to make inferences about the true value of the population

mean by inspecting the value of a sample mean.

Consider again the distribution of means from a sample of given size

(Figure 3.4). It is evident from the shape of the distribution that most samples
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will have a mean value that is close to the population mean, while a few will

have values quite different from that one. If the sample means have a normal

distribution, because of the properties of the normal distribution we know that

about 95% of the samples will have means that are less than two standard

errors away, on either side, from the population mean. For the same reason, we

know that 99% will have means that are less than three standard errors on

either side, and so forth.

Therefore, given a single sample from the population, we can state that, with a

probability of 95%, the difference of the sample mean from the population mean is

neither smaller nor greater than two standard errors in either direction. Along

similar lines, we can state that, with a probability of 99%, the difference is neither

smaller nor greater than three standard errors in either direction. And so forth.

For example, assume you have measured the total serum cholesterol in a

random sample of 100 patients with coronary heart disease. The sample mean of

total cholesterol was 210mg/dL and the standard deviation was 20mg/dL. The

observations were independent and the sample size is large enough so that we can

accept that the sample mean comes from a normal distribution. Therefore, we know

with a probability of 95% that the interval from 210mg/dL minus two standard

errors, to 210mg/dL plus two standard errors, will include the value of the

population mean.

This is progress, but still we cannot place accurately the limits of that interval.

To do so, we need to know the value of the standard error. Of course, we can never

know exactly what the true value of the standard error is, but perhaps we have the

means to estimate it from our data.

–2 SEM +2 SEMPopulation
mean

95%

2

1

3

4

The means of large
samples can be assumed
to have a normal distribution

The distribution of
samples of given
size is centered on
the population mean

95% of the sample
means will fall
within this interval

95% of the sample means will be less than two
standard errors (SEM) away from the population mean

Figure 3.4 Steps in the inference of the value of the population mean from the

value of a single sample mean.
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3.6 Confidence intervals

We have seen that the standard error is equal to the population standard deviation

divided by the square root of the sample size. We know the square root of the

sample size, but not the population standard deviation. However, the sample

standard deviation (s) is an estimate of the population standard deviation (s).

Therefore, we could obtain an estimate of the standard error, simply by dividing the

sample standard deviation by the square root of the sample size.

The question is: How good would that estimate be? We know that the estimate is

unbiased, because the sample standard deviation is an unbiased estimate of the

population standard deviation, provided that the n� 1 divisor is used. The question,

then, is mostly about the accuracy of the estimate.

If the sample size is large, the accuracy of the estimate of the population standard

deviation is high and, therefore, so is the estimate of the standard error. Furthermore,

because when we calculate the standard error we divide the sample standard

deviation by a large number, the already small difference between the sample and the

true standard deviations will be divided by a large number. Thus, we may be con-

fident that the estimate of the standard error will be very close to the true value.

Returning to the example given in the previous section, our estimate of the

standard error would be 2mg/dL, that is, the sample standard deviation, 20mg/dL,

divided by 10, the square root of 100 observations. Two standard errors equal

4 mg/dL. Therefore, we can say with a probability of 95% that the difference

between the sample mean and the population mean is neither smaller nor larger

than 4mg/dL. In other words, we can say with a probability of 95% that the

interval 210 minus 4mg/dL, to 210 plus 4mg/dL, or 206 to 214mg/dL, contains

the true value of the population mean.

The situation is thus the same as was described in the section on sampling. We

can look at our observations and make plausibility judgments about the structure of

the population. In this example, we see that the sample mean was 210mg/dL and

the sample standard deviation was 20mg/dL. This result is quite plausible if the

population mean is a quantity between 206 and 214mg/dL, but very unlikely

(although not impossible) if the population mean is smaller or higher than those

limits. We would conclude that, based on our observations, we are very confident

that the population mean lies somewhere between those limits. Technically

speaking, we could say that, based on the sampling results, we are 95% confident

that the true value of the population mean is between 206 and 214mg/dL. This is

why these limits are called 95% confidence limits, and the corresponding interval is

called the 95% confidence interval.

In the discussion on sampling, it was also said that sample size is mostly related

to the precision of the estimate, rather than to the representativeness of the sample.

As we saw above, because the standard error equals the standard deviation divided

by the sample size, then as the sample size increases, the standard error will

decrease and the confidence interval will narrow. Consequently, as the sample size

increases, we narrow the range of plausible values for the population mean.

Alternatively, we may say that our estimate becomes increasingly accurate.
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We can find confidence limits for any probability. To do so, we have to know how

many standard errors on each side of the mean define the desired proportion of

sample means. We can get this from statistical tables. For example, if we wanted

to define a 72% confidence interval, the statistical tables say that, in a normal

distribution, 1.08 standard deviations on each side of the mean delimit 72% of the

observations. The 72% confidence limits could be found by multiplying the standard

error by 1.08 and then adding and subtracting the result from the sample mean.

If we look at the statistical tables, we will see that 95% of the observations are

delimited precisely by 1.96 standard deviations, not by 2.00 as has been said. This

was for simplicity’s sake, but from now on we will always use the exact value of

1.96 standard deviations.

Finally, where does that magical 95% number come from? Actually, it is

just a convention based on an ancient statement that an event occurring only

5% of the time could be regarded as very uncommon. Thus, most statisticians

agree that it is reasonably safe to reject a hypothesis about the population if,

were that hypothesis true, the results from one’s observations had a probability

of occurrence of less than 5%.

3.7 The case of small samples

The approach for making inferences from means when all we have is a small

sample is basically the same as described for large samples in the previous section.

However, some important differences need to be understood and accounted for.

We have seen that the construction of confidence limits for the population

mean of an attribute is based on the assumption of the normal distribution of

sample means. This assumption is always verified for large samples, as long as

the scale of measurement is interval and the observations are independent. We

have also seen that for small samples this assumption is valid only if an attribute

has a normal distribution. Therefore, if the distribution of an attribute is

unknown, or is known not to have a normal distribution, we have no possibility

of determining confidence intervals in small samples. The only solution in these

cases is to increase the sample size.

The other problem with small samples is that the sample standard deviation is a

less accurate estimator of the population standard deviation than it is in large

samples. Because the sample standard deviation is obtained with a small number of

observations, its variation from sample to sample is greater than in large samples,

and increases as the sample size decreases.

This is illustrated in Figure 3.5, which presents the results of an experiment

where we generated with a computer several random samples of size 5, 10, 15, and

20 from a standard normal variable. The histograms show the distribution of the

sample standard deviations. Clearly, the smaller the sample size, the larger the

dispersion of values of the sample standard deviations. Therefore, the standard

deviation obtained in small samples is more likely to be significantly different from

the population standard deviation than in the case of large samples.
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Furthermore, in small samples, the divisor for the calculation of the standard

error estimate is also a small number. Therefore, we do not have the assurance that

we have in large samples: that any differences between the sample and the

population standard deviations will make an insignificant contribution to the value

of the standard error estimate. These two factors contribute to the much lower

accuracy of the estimate of the standard error from small samples than is the case

with large samples.

The consequences of the lower accuracy of the standard error estimator are

especially important when, by chance, a sample standard deviation is significantly

lower than the population standard deviation. In this case, the method for drawing

confidence limits as used in the case of large samples will inevitably produce the

wrong conclusions.

This situation, and its consequences, are illustrated in Figure 3.6. If the sample

standard deviation is significantly smaller than the population standard deviation,

the estimate of the standard error will also be smaller than the true standard error.

Therefore, our estimate of the distribution of sample means will not correspond to

the true distribution, its shape being less spread on both sides of the mean. When

we draw the 95% confidence limits as the values that are 1.96 standard errors from

each side of the mean, in the true distribution those values actually encompass a

lower proportion of observations. Contrary to our beliefs, the limits we find do not

correspond to 95% confidence limits but to a lower, and actually unknown,

confidence level.

In the opposite case, that is, when we obtain a sample standard deviation that is

larger than the population standard deviation, the 95% confidence interval will be

wider than it is in reality. However, this situation is not as serious as the former
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Figure 3.5 Relationship between the sample size and the spread of the sample

standard deviation.
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because the probability that the 95% confidence interval we constructed contains

the true value of the population mean will actually be 95% or greater. Therefore, we

will err on the conservative side, which is not usually seen as being of serious

importance.

To sum up, this is what can be said about the distribution of means of small

samples:

� The distribution of sample means is normal if the variable has a normal

distribution.

� As in large samples, themean of the distribution of samplemeans is equal to the

population mean.

� As in large samples, the standard error of the distribution of sample means is

equal to the population standard deviation divided by the square root of the

sample size.

� Unlike large samples, the divisionof the sample standarddeviationby the square

root of the sample size is not an accurate estimator of the standard error.

3.8 Student’s t distribution

When we are finding the values that contain 95% of small sample means, we need

to compensate for the increased variation in the sample standard deviations. As

sample size decreases and the variability of the sample standard deviation increases,

the probability that the sample standard deviation will be considerably smaller than
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Figure 3.6 The error in the determination of confidence limits from standard error

estimates obtained from sample standard deviations in the case of small samples.
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the population standard deviation will also increase. Consequently, the likelihood

that the distribution of sample means will be estimated as less spread about the

mean than the true distribution will also increase. Therefore, a reasonable approach

would be to draw, as the sample size decreases, the 95% confidence limits

increasingly farther from the mean. The difficulty would then reside on where

exactly one should draw the confidence limits.

Fortunately, it can be shown that a probability distribution called Student’s

t distribution will enable us to define where the confidence limits should be

correctly placed.

Consider a sample from a normally distributed variable and a standard error

estimate calculated from the sample standard deviation. With Student’s t distribution,

similar to what we have seen for the normal distribution, we can relate the relative

frequency of the values of a variable with their distance from the mean, measured as

the number of estimated standard errors. Unlikely the normal distribution, however,

Student’s t distribution will also take into account the sample size.

For example, take a sample of eight observations from a normally distributed

variable and a standard error estimate obtained from the sample data. Student’s t

distribution will tell us that only about 92% of the sample means will be within two

times the estimated standard errors on each side of the population mean. If the

sample size was 4, for example, only 85% of the sample means will be within two

estimated standard errors on each side of the population mean.

This might be getting a little confusing, because with large samples the standard

error is also estimated from the data. Why, then, do we use the normal distribution

to find confidence limits in large samples, and not Student’s t distribution? Strictly

speaking, we do not, and that can be easily verified in most statistical software

packages, which use the t distribution to find confidence limits, no matter how large

the sample is. But if they used the normal distribution instead, we would see that the

difference between the two confidence limits was very small. This is because the t

distribution approaches the normal distribution as the sample size increases.

Technically speaking, we say that the t distribution converges to the normal

distribution with increasing sample size.

Perhaps we should now look at Figure 3.7 for an illustration of Student’s t

distribution. The curve shows the relative frequency of observations as a function of

t (as is seen on the horizontal axis), where t is a quantity that represents the distance

to the mean expressed as the number of standard error estimates. Overall, Student’s

t distribution is similar in shape to the normal distribution, except that its tails are

thicker. There is one curve for each sample size, which is why Student’s t

distribution is said to be a family of distributions. Each curve is referenced

according to its degrees of freedom. In this particular problem on the construction

of confidence limits, the appropriate degrees of freedom are the sample size minus

one. Generally, we say the t distribution with n� 1 degrees of freedom.

For example, with a sample of 5 observations we should use the t distribution

with 4 degrees of freedom, with 10 observations the t distribution with 9 degrees of

freedom, and so on. As the number of degrees of freedom (and therefore the sample

size) increases, the t distribution gradually approaches the normal distribution.
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Actually, when the number of degrees of freedom is infinite, the two distributions

are identical. The convergence of Student’s t distribution to the normal distribution

is illustrated in Figure 3.8 which shows, for several sample sizes, how many

standard errors estimated from the sample standard deviation must be counted on

each side of the mean to obtain the 95% confidence limits. For infinite degrees of

freedom, one must count 1.96 estimated standard errors, which is the same number

we saw previously for the normal distribution.

To sum up, an adequate procedure for finding confidence limits with small

samples consists of estimating the standard error from the data, and then using

Student’s t distribution to find, for that sample size, how many standard error
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Figure 3.7 Several Student’s t distributions with different degrees of freedom

(df).

Degrees of freedom 
Number of estimated 

standard errors 
(t-value) 

2 4.30 

5 2.57 

20 2.09 

60 2.00 

120 1.98 

∞ 1.96 

Figure 3.8 Number of estimated standard errors on each side of the mean that

define the interval of values that contain 95% of the observations, as function of the

degrees of freedom.
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estimates need to be counted on each side of the sample mean. We will then obtain

the correct confidence limits. The procedure is illustrated in Figure 3.9.

Therefore, the principles and procedures are very similar to those for large

samples, except that the normal distribution is replaced by Student’s t distribution

to find the number of standard errors on each side of the sample mean.

3.9 Statistical tables of the t distribution

We can use statistical tables of the t distribution to find the number of

standard errors estimated from the data that must be counted on each side of

the sample mean to obtain the desired confidence interval, given the sample

size. As often happens with statistical tables, not all tables of the t dis-

tribution are alike. For example, the table shown in Figure 3.10 displays

the values that are exceeded, in both directions, by a certain proportion of the

observations. We know that because it is shown by the shaded areas in the

figure above the table.

The values in the first column of the table are the number of degrees of

freedom of the t distribution. On the first row several proportions are presented.

The tabulated values are the distance to the mean of the distribution expressed

as the number of estimated standard errors.

For example, we have a sample of six observations, and we want to

draw the 95% confidence limits. First we must find the row corresponding

1

4
5

2 3

Estimate the standard error from the sample standard deviation
and the sample size (n) 

The true distribution of
sample means 95% of sample means are

within the interval defined
by t estimated standard
errors on each side of the
mean

Refer to the Student’s t
distribution with n – 1
degrees of freedom 

Find how many sample
standard errors (t -values)
on each side of the mean
contain 95% of the
observations 

Figure 3.9 Steps in the construction of 95% confidence intervals using Student’s t

distribution.
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to 5 degrees of freedom. For 95% confidence limits we find the column

corresponding to a proportion of 0.05, that is, 5% of the observations are

outside the confidence limits. At the intersection of the row and column,

we read off the number 2.571. Therefore, we must count 2.571 standard

error estimates on each side of the sample mean to obtain the 95%

confidence limits. If we wanted 90% confidence limits, we would look in

the column corresponding to a proportion of 0.10, for 99% confidence

limits in the column 0.01, and so forth.

Let us return to the example of serum cholesterol in patients with

coronary heart disease. Assume that we have obtained the mean and

standard deviation, respectively 210mg/dL and 20mg/dL, from a sample

of seven patients. First we calculate the standard error from the sample

data as 20mg/dL divided by the square root of 7. This value is 7.56mg/dL

and we know there is a considerable chance that this value is smaller than

the true value of the standard error. So we find in the statistical table of

the t distribution how many standard errors estimated from the sample we

must count to get the correct 95% confidence limits. At the intersection of

6 degrees of freedom and the probability of 0.05 we read off 2.447. This is

the number of estimated standard errors that must be counted on either

side of the sample mean to obtain 95% confidence limits. So we multiply

7.56 by 2.447mg/dL and obtain 18.50mg/dL. Therefore, the 95%

confidence limits are 210� 18.50 and 210þ 18.50, or 191.5 mg/dL and

228.5mg/dL.

v 0.90 0.50 0.30 0.20 0.10 0.02 0.01 0.001 

1 0.158 1.000 1.963 3.078 6.314 
2 0.142 0.816 1.386 1.886 2.920 
3 0.137 0.741 1.250 1.638 2.353 4.541 5.841 12.924 
4 0.134 0.741 1.190 1.533 2.132 3.747 4.604 8.610 

3.365 4.032 6.869 

6 0.131 0.718 1.134 1.440 3.143 3.707 5.959 
7 0.130 0.711 1.119 1.415 2.998 3.499 5.408 

232
5 0.132 0.727 1.156 1.476 2.015 

1.943 
1.895 

0.05 

3.182 
2.776 
2.571 

2.447 
2.365 

12.706 31.821 63.657 636.62 
6.956 9.925 31.598 4.303 

Table A2     Percentage points of the t distribution 

tv,P -tv,P 
Probability of greater value Degrees of 

freedom 

Figure 3.10 Example of utilization of a statistical table of Student’s t

distribution.
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3.10 Estimation with binary variables

So far, the discussion has been restricted to attributes measured in interval scales.

However, in clinical research we are often interested in patient attributes that

may be characterized only by their presence or absence (e.g., family history of

asthma) or that classify subjects into two groups (e.g., males and females, death

and survival).

As we saw in Section 2.2, attributes taking only two values are called binary

attributes. They represent the most elementary type of measurement and, therefore,

convey the smallest amount of information. It is useful to think of binary variables

as attributes that may be on or off, because then the above distinction is not

necessary. For example, we may think of the ‘gender’ attribute simply as ‘male

gender,’ and of its values as yes and no. Similarly, the outcome could be thought as

only ‘survival,’ with values yes and no. This is the same as for the family history of

asthma, which also has the values yes and no.

We could convey the same information as yes/no by using the numerical system.

Therefore, we could give the attribute the value 1 to mean that it was present, and 0

to mean that it was absent. This is much more appropriate, because now we can

think of binary variables not as categories, but as numerical variables that happen to

take only two possible values, 0 and 1.

Furthermore, observations from binary variables are commonly presented as

relative frequencies as in, for example, 37% of females or 14% with family history

of asthma. If we adopt the 0/1 values for binary variables, those proportions are

nothing more than the average of samples from a variable with values 0 and 1. If

males have value 0 and females 1, then in a sample of 200 subjects with 74 females

the sum of the attribute gender totals 74 which, divided by 200 (the sample size),

gives the result 0.37, or 37%.

As a binary variable is a numeric variable, in addition to calculating a mean we

can also calculate a variance. The variance of a binary attribute is equal to the

product of the proportions with and without the attribute. So, if we denote the

population mean of a binary attribute by p, the Greek letter ‘p,’ then the population

variance is equal to p(1�p).

Therefore, if we can calculate means and variances for binary variables, then it

might be possible to infer the proportion of the population that presents an attribute

from the proportion observed in a random sample.

Basically, the rationale for making statistical inferences from samples, as was

explained for interval variables, also applies to binary variables. There are, however,

some adaptations to be made because binary variables can take just two values, not

an infinite number.

The greatest difference from the case of interval variables lies in the

assumptions that must be made regarding the distribution of sample means. Unlike

interval variables, where we do not know the distribution of sample means unless

the samples are large or come from a normal distribution, with binary variables

we always know exactly what the distribution is. That distribution is called the

binomial distribution.
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3.11 The binomial distribution

Imagine samples of four random observations on a binary attribute, such as gender

for example, where we know that the distribution in a population is equally divided

between males and females. Each sample may have from 0 to 4 females, so the

proportion of females in the samples is 0%, 25%, 50%, 75%, or 100%.

It is a simple matter to calculate the frequency with each of these results will

appear. We write down all possible combinations of males and females that can

be obtained in samples of four, and count in how many cases there are 0, 1, 2, 3,

and 4 females. In this example, there are 16 possible outcomes. There is only

one way of having 0 females, so the theoretical frequency of this outcome is

once out of 16 outcomes, or 6.25%. There are 4 possible ways out of 16 of

having 25% of females, which is when the first, or the second, or the third, or

the fourth sampled individual is a female. Hence, the relative frequency of this

outcome, at least theoretically, is 25%. There are six possible ways of having

50% of females, so the relative frequency of this outcome is 37.5%. There are

four possible ways of having 75% of females, so the frequency of this result is

25%. Finally, there is only one possible way of having 100% of females, and the

relative frequency of this result is 6.25%.

These results are presented by the graph in Figure 3.11, which displays all the

possible proportions of females in samples of four and their relative frequency.

Since, as we saw before, the proportion of females in a sample corresponds to the

mean of that attribute, the graph is nothing more than the probability distribution of

the sample means. This distribution is called the binomial distribution. All random
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Figure 3.11 Probability distribution of a proportion: the binomial distribution.
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binary attributes, like the proportion of patients with asthma in a sample, or the

proportion of responses to a treatment, follow the binomial distribution.

The calculation of the frequency of all possible results by the method outlined

above can be very tedious for larger sample sizes because there are so many

possible results. It is also complicated for attributes whose values, unlike the above

example, do not have equal probability. Fortunately, a formula exists that allows us

to calculate the frequencies for any sample size and for any probability of the

attribute values, but we do not need to know it.

Since the means of binary attributes in random samples follow a probability

distribution, we can calculate the mean and the variance of sample proportions in

the same way as we did with interval-scaled attributes. If we view a sample

proportion as the sum of single observations from binary variables with identical

distribution, then the properties of means allow us to conclude that mean of the

distribution of sample proportions is equal to the probability of the attribute.

By the same reasoning, we conclude that the variance of sample proportions

must be the variance of a binary attribute (the product of the probability of each

value), divided by the sample size. If we call p the probability of an attribute having

the value 1 (or, if we prefer, the proportion of the population having the attribute)

and n the sample size, the variance of sample proportions is, therefore,

var(p)¼p(1�p)/n. The standard deviation, which we call the standard error of

sample proportions, is the square root of this quantity.

To sum up, let us review what can be said about the distribution of means of

random samples of binary variables:

� The distribution of the sample proportions is known, and is called the binomial

distribution.

� Themean of the distribution of sample proportions is equal to the probability of

the attribute.

� Thestandarderrorof sampleproportions is equal to the square rootof theproduct

of the probability of each value divided by the sample size.

3.12 Inferences from proportions

We have a sample of random observations on a binary attribute, we know the

proportion of individuals in the sample that have the attribute, and, with this, we

want to estimate the proportion in the population that has the attribute. We saw in

the previous section that, because the attribute is binary, we know that the sample

mean is an observation from a variable with a binomial distribution. Therefore, for

the calculation of 95% confidence limits we only have to find which values of the

proportion in the population would be inconsistent with the proportion observed in

the sample. Specifically, we want to know which values of the population

proportion would result in a probability of less than 2.5% of obtaining a proportion

in the sample as low, or as high, as the one observed in the sample. We do so with

the formula for the binomial distribution, which we do not need to know.
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If we did know the formula for the binomial distribution we could use it to find

exact confidence limits. For example, in a sample of size 20 the attribute was

present in seven (35%) of the individuals. Using the binomial formula, we could

calculate that if the true proportion of the attribute in the population was smaller

than 15.4%, the probability was only 2.5% of obtaining seven or more

individuals in a random sample. Conversely, if the proportion in the population

was greater than 59.2%, the probability was only 2.5% of obtaining seven or

fewer individuals in a random sample. We would conclude with 95% confidence

that the proportion of the attribute in the population was between 15.4% and

59.2%. In other words, that the 95% confidence interval was 15.4% to 59.2%.

Computing confidence limits with the formula for the binomial distribution is a

very tedious procedure. Fortunately, there is a simpler way of finding confidence

limits. If we view a sample proportion as the sum of single observations from binary

variables with identical distribution, then the central limit theorem applies.

Therefore, provided the sample size is large, the distribution of sample proportions

will converge to the normal distribution. We can then use the same method as we

did for large samples of interval variables. The convergence of the binomial

distribution to the normal distribution as the sample size increases can be confirmed

visually in Figure 3.12.
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Figure 3.12 The convergence of the binomial distribution to the normal distribution.
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Let us lay down the method of finding confidence intervals for large samples of

binary variables, using the normal approximation of the binomial distribution, by

referring to Figure 3.13.

We know that proportions obtained on large samples will closely follow the

normal distribution. As was done with interval variables, we estimate the standard

error from the data.

As we saw above, the variance of sample proportions is equal to p(1�p)/n. In
large samples, this quantity may be estimated from our data as p(1� p)/n, where p

stands for the sample proportion. Therefore, we may estimate the standard error of

sample proportions by the square root of p(1� p)/n.

We know that in 95% of the samples the observed proportion will be within 1.96

standard errors on each side of the population proportion. Conversely, with 95%

probability, the population proportion will not be more than 1.96 standard errors

away, in either direction, from the sample proportion. The 95% confidence limits

are, therefore, the observed proportion minus 1.96 standard errors, and the observed

proportion plus 1.96 standard errors.

Let us consider an example. In a random sample of size 20 an attribute was

observed in seven subjects. We will use the normal approximation to the binomial

distribution to obtain 95% confidence limits for the population proportion p. The

sample proportion is 7/20¼ 0.35 and we will estimate the standard error of the

sample proportions using our data. Therefore, the estimate of the standard error

will be the square root of 0.35� 0.65/20, or 0.1067. The lower limit of the 95%

-2 SEM +2 SEM Proportion in the
population
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5

The distribution of proportions
in large samples approximates
the normal distribution

The mean of the
distribution is equal
to the population
proportion 

95% of the sample
proportions will fall
within this interval 

95% of the sample proportions will be less than two
standard errors (SEM) from the population proportion

The standard error
can be estimated
from the sample

95% 

Figure 3.13 Steps in the construction of the 95% confidence interval of the

population proportion.
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confidence interval will be 0.35� 1.96� 0.1067¼ 0.141 and the upper limit will

be 0.35þ 1.96� 0.1067¼ 0.559. The 95% confidence interval is, thus, 14.1 to

55.9%. The exact 95% confidence interval obtained with the formula for the

binomial distribution is 15.4 to 59.2%.

The remaining question is: How large is a large sample? It is generally

accepted that when we have at least five observations on each value of the

attribute, it is safe to use the normal approximation of the binomial distribution.

Therefore, if the proportion in the sample is 50% we need 10 observations, if

it is 1% or 99% we need 500 observations.

If the sample is small, use of the normal approximation results in the wrong

confidence intervals, and this will usually be quite obvious, often more so with

proportions that are either large or small, because then the sample size requirements

for the assumption of normality increase. As standard errors are large and the

proportions are close to 0% or 100%, often the confidence limits will be below 0%,

that is, negative, or over 100%. In each case, this is an impossibility. Therefore,

with small samples we have to use exact confidence limits, which may be obtained

either from the formula for the binomial distribution or from tables of the binomial

distribution.

3.13 Statistical tables of the binomial distribution

When sample sizes are small, the normal approximation of the binomial dis-

tribution cannot be assumed. This occurs when in the sample there are less than

five observations on either value of the binary attribute. If one attempts to use

the normal approximation, it is almost certain that one will obtain absurd results.

Consider a sample of size 6, where the attribute was present in two (33.3%)

individuals. The conditions for the approximation to the normal distribution are

not met, but let us ignore this and use the normal approximation to find the 95%

confidence limits.

The standard error estimate would be the square root of the product of 2/6

and 4/6 divided by 6, or 0.192. The upper confidence limit, therefore, would be

1.96 times 0.192, added to 2/6 or 0.710; the lower confidence limit would be

the same quantity subtracted from 2/6 or �0.043. We would conclude that the

95% confidence interval was �4.3 to 71.0%, which is obviously wrong since

proportions cannot be negative.

The only solution to this situation is to find the exact confidence limits. This

may be done with a statistical package or with statistical tables of the binomial

distribution, an example of which is shown in Figure 3.14.

The tabulated values are the 95% and 99% confidence limits for the

specified sample sizes. For example, to find exact confidence limits for the
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proportion above, we look for the sample size (N¼ 6) and in the column x we

find the number of observations with the attribute, which in the example was 2.

We then read off the exact 95% confidence limits, 4.33 to 77.72%, or the 99%

confidence limits, 1.87 to 85.64%. The result is quite different from the one

obtained with the normal approximation.

3.14 Sample size requirements

We have seen in Section 3.6 that as the sample size decreases, the standard error

increases and, consequently, the confidence interval widens and the precision of the

estimate also decreases. The standard error, therefore, can be seen as a measure of

the precision of the estimate. This is the reason why authors of scientific papers

often present their results as the sample means (the so-called point estimates) and

their standard errors, thus conveying information on the precision of the study.

Because the sample size is mostly related to the precision of the estimates, when

a study is being planned, the decision on the number of observations required must

be based on the precision that is desired for the estimates. Put differently, the

sample size must be the one necessary to provide confidence intervals of the desired

size. For example, one could decide that the precision should be within 2 percentage

points of the true population proportion. This means that one wanted the 95%

Table A3     Exact confidence limits for p 
N = number of trials, x = number of successes, 100px = 100x/N 

0 
1 
2 

0.00 
50.00 

100.00 

  0.00–84.19 
  1.26–98.74 

15.81–100.00 

0.00–92.93 
0.25–99.75 

7.07–100.00 

0 
1 
2 
3 

0.00 
33.33 
66.67 

100.00 

  0.00–70.76 
  0.84–90.57 
  9.43–99.16 

29.24–100.00 

  0.00–82.90 
  0.17–95.86 
  4.14–99.83 

17.10–100.00 

0 
1 
2 
3 
4 

0.00 
25.00 
50.00 
75.00 

100.00 

  0.00–60.24 
  0.63–80.59 
  6.76–93.24 
19.41–99.37 

39.76–100.00 

  0.00–73.41 
  0.13–88.91 
  2.94–97.06 
11.09–99.87 

26.59–100.00 

N = 2 

N = 3 

N = 4 

x 100px

100 (1-2 ) limits 
95% 

100pl   100ph

99% 
100pl   100ph

0 
1 
2 
3 
4 
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0.00 
20.00 
40.00 
60.00 
80.00 

100.00 

  0.00–52.18 
  0.51–71.64 
  5.27–85.34 
14.66–94.73 
28.36–99.49 

47.82–100.00 

  0.00–65.34 
  0.10–81.49 
  2.29–91.72 
  8.28–97.71 
18.51–99.90 

34.66–100.00 

  0.00–58.65 
  0.08–74.60 
  1.87–85.64 
  6.63–93.37 
14.36–98.13 
25.40–99.92 

26.59–100.00 

N = 5 

N = 6 

x 100px

100 (1-2 ) limits 
95% 

100pl   100ph

99% 
100pl   100ph

  0.00–45.93 
  0.42–64.12 
  4.33–77.72 
11.81–88.19 
22.28–95.67 
35.88–99.58 

54.07–100.00 
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100.00 

Figure 3.14 Example of a statistical table of the binomial distribution.
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confidence interval to be smaller than 2 percentage points on each side of the mean.

The sample size requirements to meet this specification would be the number of

observations necessary to obtain a standard error of about 1 percentage point.

For example, assume that we are planning a study to investigate the proportion

of the adult population affected by osteoporosis. Because we are going to

estimate a proportion and the standard error depends on the value of the

proportion, it would be wise to try to obtain some information on what the

proportion of osteoporosis in the population might be. Let us assume that we

concluded from a literature review that it must be a value around 15%. The next

step would be to decide what precision we wanted for our estimate. Since this

will be a study in the community, it is customary in these cases to use a

precision of 2 percentage points.

So now we need to calculate a sample size that ensures, with a 95%

confidence level, that the sample proportion will not differ by more than 2

percentage points from the population, provided the population proportion is

not much different from 15%. This, of course, is the same as saying that the

95% confidence interval should be smaller than 2 percentage points on either

side of the sample proportion. All we need to do, therefore, is to calculate the

sample size that makes the standard error times 1.96 equal to 0.02, the error of

the estimate. That is,

1:96�
ffiffiffiffiffi
s2

n

r
¼ error

Solving the equation for n, we get

n ¼ 1:962 � s2

error2

In this example, 15% is our guess of the population proportion with

osteoporosis, 85% the proportion without osteoporosis, and 2% the desired

error of the estimate. The calculation of the sample size would then be

n ¼ 1:962 � ð0:15� 0:85Þ
0:022

¼ 1225

We would need a sample of 1225 individuals to estimate a population

proportion of about 15% with an error margin of 2 percentage points.

Sometimes we do not have any information on the expected proportion

of the population with an attribute. At other times, we want to estimate the

proportions of several attributes with the same study. In either case, the best

approach is to assume the worst scenario in terms of sample size requirements.

Since the variance of a proportion is largest when the proportion is 50%,

decreasing for smaller and larger proportions, we could calculate the sample
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size only for a 50% proportion. This is the maximum error of the estimates,

since attributes with smaller or larger frequency will all be estimated with

greater precision.

The procedure is exactly the same if we want to study an interval variable.

Because the standard error depends on the standard deviation, it would be wise to

search the literature for a likely value of the standard deviation of the variable.

Then, we must define the size we want for the 95% confidence interval, and

calculate the sample size in the same way.

Because precision increases only with the square root of the sample size, it is

costly to increase precision above a certain limit. This is illustrated in Figure 3.15,

which relates the sample size requirements with the error of the estimate of a

population proportion of 50%.

It is evident from the graph that sample size requirements increase dramatically

for errors of the estimate below 2 percentage points. This is the reason why the 2

percentage point error is usually the adopted limit of precision when estimating a

population proportion. On the other hand, there are no significant savings in sample

size if the error is greater than 5 percentage points, and this is the usually adopted

lower limit of precision.

It must also be taken into account that the standard error decreases with

decreasing variance. Therefore, another way of increasing precision or, for the same

precision, decreasing sample size, is to reduce variance. This approach is also more

efficient than augmenting the sample size, because the standard error decreases

linearly with the standard deviation. If the standard deviation is reduced to
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one-half, the standard error also is reduced to one-half and the precision doubles. To

achieve the same result by increasing the sample size, four times more observations

would be needed.

Variance can be reduced by several methods. Probably the first one to consider

is to reduce the variance of the measurements. This may be done by using

reliable instruments, calibration, several observers, or repeated measurements, for

example. Another way is to reformulate the population, excluding groups of

individuals that may be responsible for increased variance. This is frequently

done with experimental studies, where the too ill, too old, or too young are often

excluded. Of course, this method has the disadvantage that the results will not

apply to those segments of the population that have been excluded from the

study, and the study will lose scope. In order to avoid this, an alternative would

be to design a stratified study, in which the sample size is different for each group

of individuals. This and other methods of sampling are the subject of the next

chapter of this book.
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4

Descriptive studies

4.1 Classification of descriptive studies

Descriptive studies represent one of the first steps in the formal investigation of a

new problem. They consist of the systematic collection of data from a

representative sample of a specified population, with the ultimate aim of describing

the problem at the finest level of detail. Specifically, the purpose of descriptive

studies is to determine the characteristics of a population through the means and

proportions of its attributes.

As discussed in Section 1.2, when one is planning an investigation, there are

three essential aspects to consider. There must be a clear and unambiguous

definition of the population being studied, a sampling plan that will provide an

adequate and unbiased sample, and a study design appropriate to the objectives of

the investigation. Then, after all the data has been collected, it is necessary to

analyze and present the study results with adequate statistical methods.

The basic statistical methods necessary for analyzing the data of a descriptive

study have already been presented. They are descriptive statistics, point estimates,

and confidence intervals. We have also been through the notions required for the

calculation of the sample size required for a descriptive study. In this chapter we

will go through a few additional statistical methods that are frequently used in

descriptive studies. Because descriptive studies are so important to epidemiology,

the science that studies the distribution and determinants of disease in populations,

this subject will be presented under the perspective of epidemiological studies, and

a few analytical methods that are often used in such studies will be covered. We will

also add a bit more to the subject of sample size calculation. The emphasis of this

chapter, however, will be on sampling methods and on study designs for descriptive

studies and these issues will be addressed in the following sections. For now, only

the more general aspects of study design will be presented.
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Descriptive studies can be classified in many ways, since there is considerable

lack of uniformity regarding their nomenclature. To keep matters simple,

throughout the book the following nomenclature will be adopted.

If the information and the data existed prior to the initiation of the study, the

study is called retrospective. The opposite of retrospective is prospective, that is,

the data is collected after the beginning of the study. Some studies have both

retrospective and prospective elements. The distinction is of considerable impor-

tance, because retrospective studies are more vulnerable to errors, such as missing

data and failure to recall past events, and thus they have a tendency to produce data

of lower quality. On the other hand, they are less costly than prospective studies and

can be executed in a fraction of the time necessary for the latter.

If the data is collected only once from each individual in the sample, the study is

called cross-sectional. If each individual is observed over a length of time, possibly

with repeated measurements of some attributes, the study is a cohort study. There

are no relative merits of one design over the other – the selection must be based on

what is appropriate for the problem under investigation. However, both cross-

sectional and cohort studies can be done prospectively or retrospectively, and the

considerations above apply unaltered to these studies.

Generally, cross-sectional studies are less costly, easier to plan, manage, and

conduct, are less vulnerable to errors, and easier to analyze and interpret than cohort

studies. On the other hand, cohort studies provide much more data and allow a more

precise characterization of the evolution of a clinical condition than cross-sectional

studies. However, the option between the two designs is not based on cost

considerations, but rather on the research objectives.

Both types of studies have in common that they aim at obtaining unbiased

estimates of population characteristics. This poses stringent requirements on the

methodology of sampling, which is much more demanding in descriptive than in

analytical and experimental studies. In the next sections we will discuss several

sampling methods used in descriptive studies.

4.2 Probability sampling

We have seen how random observations from a population could be used to draw

inferences about the characteristics of the population. We have also seen that the

estimation of the true mean value of an attribute in the population is made by

excluding, with a high degree of confidence, those values that would make very

unlikely the set of observations we had made on the population. We have discussed

the methods for making inferences from small samples and we saw that, even with

small samples, we could obtain valid estimates of population means provided

certain conditions were met.

Two conditions required for valid statistical inferences have direct implications

on the methodology of sampling. First, we have seen that observations must be

random. Second, we have seen that the methodology for the construction of

confidence intervals is based on the properties of means and variances that were

discussed and which are valid only for independent observations. This means that if
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the observations are not random the point estimates will be biased, and therefore

wrong, and that if the observations are not independent the confidence limits will

not be correct, and therefore the precision of the estimates will be less than

declared. In the first case, there is no possible correction because we will have no

means of knowing the direction and magnitude of the bias. In the second case we

may still get valid estimates, but only on condition that the non-independence of the

observations has been foreseen and controlled, in which case its impact on the

estimates may be accounted for in the analysis and corrected.

In practical terms, this means that we must select the subjects for inclusion in a

sample through a random process that prevents the investigator from exercising

any type of voluntary or involuntary selection of the individuals. Selecting people

at random may turn out not to be random if the investigator avoids, often unawares,

people with certain characteristics, like an uncooperative or even an aggressive

look. This also means that the investigator must not use an individual who was

previously selected for the sample to gain access to further observations in

individuals who are, in some way, in close proximity to the first one. If, after

interviewing an individual, the investigator collects some more observations from

the people who were accompanying the individual, this may bring some gains in

time and effort, but the observations may not be independent. Consequently, the

study could be severely biased, although still carrying the label of randomized.

Therefore, to avoid the introduction of bias in a study, a procedure for the selection

of individuals must be defined and strictly followed throughout the study.

In addition to having to select individuals according to a random process, and to

define procedures for the inclusion of subjects in the sample, there are two more

requirements for a sample to be considered representative. First, every individual in

the target population must have some possibility of being selected for the sample.

Second, it is possible to know the probability that each individual in the target

population has of being selected for the sample and, therefore, the size of the

population must be known.

These characteristics define what is called probability sampling. The

alternative, non-probability sampling, selects individuals from the population

according to their accessibility or personal characteristics, a process that may leave

entire segments of the population with no possibility of being selected for the

sample. As it is impossible to know exactly who were the individuals excluded from

the sampling process, and how many there were, it is also impossible to assess the

direction and magnitude of the bias. A typical example of non-probability sampling

is convenience sampling, whereby individuals are selected just because they are

easily accessible. Convenience samples are used extensively in analytical and

experimental clinical studies, where the representativeness of convenience samples,

and therefore the validity of the results, rests upon the subjective judgment of

eventual sources of bias and their potential impact on the results, rather than on

sampling theory. However, as the main goal of descriptive research is to provide

unbiased and reliable estimates of the characteristics of a population, every effort

should be made to base those estimates on probability samples.

Finally, it is important to mention that probability sampling is not by itself a

guarantee of correct population estimates. Probability samples may be severely

DESCRIPTIVE STUDIES 65



biased because of non-sampling errors, for example, because of high rates of

faulty measurements, non-responders, or missing data. Naturally, non-sampling

errors have a greater impact on the value of population estimates in the case of

small samples. Therefore, large samples have the double benefit over small samples

of producing more accurate as well as more robust estimates of population

parameters; that is, they are less sensitive to non-sampling errors and to insidious

causes of potential bias and they afford greater credibility to the results.

4.3 Simple random sampling

The methodology to obtain a probability sample consists of creating a listing of all

elements of the population, assigning a unique number to each element in the list,

generating random numbers, as many as the sample size required for the study, and

selecting for the sample the elements with a corresponding number. This sampling

method is called simple random sampling (Figure 4.1).

In survey terminology, the list with the enumeration of all elements of the

population is called a sampling frame. The elements of the population that are

randomized are called primary sampling units, or PSUs. In the case of simple

random sampling, the PSUs are the individuals, but this may not be so in other

methods of sampling.

If the population is large, it is tedious to number all elements in the sampling

frame and then find each number generated by the computer. In this situation,

systematic random sampling might be used. Suppose there are 150 000 individuals

in the population, of which we want a sample of 500. The sampling fraction is,

therefore, 1 out of 300. A systematic sampling would be as follows. First, we would

take a random number between 1 and 300. Let us assume that number was 156.

Therefore, we would select the 156th name in the list, and then every 300th name,

that is, the 456th name, the 756th name, and so on. This would be the equivalent

to a simple random sample, provided the first individual was selected at random and

that there was no cyclic pattern in the list with approximately the same frequency

as the interval we defined. Consecutive random sampling is a particular form of

systematic sampling where the interval between selected elements is one.

Simple random sampling Systematic sampling 

Figure 4.1 Representation of simple and systematic sampling.
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All three methods are valid for obtaining a random sample and if correctly used

will produce identical estimates of the population attributes. Sampling frames

should be prepared in a way that removes any periodicity in the data and, therefore,

should not be sorted by any attribute of the individual, such as given name.

With simple, systematic, and consecutive sampling, estimates of the population

attributes are made using the general methods presented in Sections 3.6, 3.8 and

3.12 for means and proportions. However, there are a few issues that need to be

addressed in order to completely understand the process of inference from samples.

These will be discussed in the next section.

4.4 Replacement in sampling

Throughout our discussions on sampling and estimation we have always assumed

that the probability of an attribute remains the same during the entire process

of sampling. This will be true only if the sampled elements are returned to the

population after being observed, thus keeping the denominator constant. This

means that the same individual may be selected more than once for the sample.

If we do not allow the same individual to be observed more than once, as is usually

the case in clinical research, every time we select an individual for the sample, the

population from which we will select the next individual will shrink by one and

the probability of the attribute will be different.

For example, consider a population of size 20 and an attribute with probability

0.6. Therefore, in the population there are 12 elements with, and 8 without, the

attribute. Suppose that we take a sample of 4 elements, one at a time, returning each

sampled element to the population after we have checked whether the attribute was

present. Then, the probability of the attribute for the first element is 12/20, as well

as for the second, third, and fourth elements,

Now let us repeat the sampling without returning each sampled element to the

population. The probability of the attribute for the first element is, of course, 12/20,

but because that element was not returned to the population, the population size is

now 19. If the first element had the attribute, there would remain only 11 elements

in the population with the attribute and thus the probability of the attribute for the

second sampled element would be 11/19; if the first element did not have the

attribute the probability would be 12/19.

The first method of sampling is called sampling with replacement and the

second sampling without replacement. What are the implications of replacing the

sampled elements on the probability distribution of sample proportions?

We have seen before that when the probability of an attribute remains constant

throughout the process of sampling, as in sampling with replacement, the sample

proportions follow the binomial distribution. Is this also true for sampling without

replacement?

Using the same example, let us compare the probability of a sample proportion

of 100%, that is, a sample in which all four elements have the attribute, in sampling

with and without replacement. The probability of this result is equal to the
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probability of the first element having the attribute multiplied by the probability of

the second element having the attribute, by the probability of the third element

having the attribute, and by the probability of the fourth element having the

attribute. In sampling with replacement the probability of that result is 12/20� 12/

20� 12/20� 12/20¼ 0.1296. In sampling without replacement the probability is

12/20� 11/19� 10/18� 9/17¼ 0.1022. Therefore, the distribution of sample pro-

portion is not the same in sampling with and without replacement.

Figure 4.2 shows the probability of sample proportions with (upper graph) and

without (lower graph) replacement. It can be seen that in sampling without replace-

ment the probability distribution of sample proportions is not binomial, but a

different distribution called the hypergeometric distribution.

This difference in probability distributions has implications for the calculation of

confidence intervals because the variance of sample proportions, the square of the

standard error of the proportion, is smaller in sampling without replacement. This is

because, as the sampling process progresses, the sampling fraction remains constant in

sampling with replacement but increases in sampling without replacement because the

population will be shrinking. Therefore, in the latter case the precision will be greater.

Actually, the two variances differ by a constant factor which is (N� n)/

(N� 1), where n is the sample size and N the population size. This factor is

called the finite population correction, or fpc. Its value can be rounded to one

minus the sampling fraction, that is, 1� n/N. This applies also to attributes

measured in interval scales.

Therefore, if sampling was without replacement, the variance of sample

means should be multiplied by the fpc in order to obtain the value of standard

errors that we will use for estimating population means and proportions. As in

clinical research sampling is mostly without replacement, in the calculation of

standards errors we would need to account for the fpc. However, if the sampling

fraction is 5% or less, which it virtually always is, there is no real gain in

including the fpc in the calculation of standard errors because the reduction will

be about only 0.7%.
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Figure 4.2 Comparison of the binomial and the hypergeometric distributions.
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The estimation of population means and proportions from simple random

samples is made according to the method described previously. Therefore,

point estimates are the sample mean or proportion and the standard errors are

obtained by the square root of the sample variance divided by the sample size.

If we wish to use the fpc, then the standard error should be multiplied by the

square root of the fpc.

Sample size requirements are calculated as explained before, but if the fpc

is going to be used then the calculation is slightly different. Let us review how

sample size is calculated for binary and interval attributes in sampling with

replacement. Remember that the investigator needs to provide an informed

guess about the population proportion for binary attributes, and the population

variance for interval attributes. The investigator decides upon the error of the

estimates and the confidence level. Let us call D the quotient of the error by the

z-value corresponding to the desired confidence level (i.e., 1.96 for 95%

confidence intervals or, more generally, za/2 for 1�a confidence intervals).

For binary and interval attributes, respectively,

n ¼ pð1� pÞ
D2

and n ¼ s2

D2

If the fpc is going to be used, the calculations for binary and interval attributes,

respectively, are

n ¼ Npð1� pÞ
ðN � 1ÞD2 þ pð1� pÞ and n ¼ Ns2

ðN � 1ÞD2 þ s2

For large population sizes the improvement of estimates in sampling without

replacement is negligible. For example, suppose we wish to estimate the

proportion of chronic heart failure patients in the population. We start by making

an informed guess as to what that number might be and, for this, we use the results

from the NHANES survey, which estimated a proportion of 2.62% for the US

population over 20 years old. We define an error of the estimate of 1 percentage

point, with a 95% confidence level. The calculation of the sample size is

n ¼ 0:0262ð1� 0:0262Þ
ð0:01=1:96Þ2 ¼ 980:13

As our sample will be without replacement, we calculate the sample size

using the fpc. For this, we need to know the population size. Using data from

the most recent population census we were able to determine that the

population older than 20 years old is 8 249 856. The sample size for sampling

without replacement is

n ¼ 8 249 856� 0:0262� ð1� 0:0262Þ
8 249 855� ð0:01=1:96Þ2 þ 0:0262ð1� 0:0262Þ ¼ 980:01

The gain brought about by using the fpc is indeed negligible.
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4.5 Stratified sampling

We saw in Section 3.14 that, for a given precision of the estimate and level of

confidence, sample size is dictated by the variance of the attribute. Populations are

usually heterogeneous regarding an attribute, with some segments of the population

having a large, and some a small, mean value. When these groups are merged into a

single population, variance is increased (Figure 4.3). Therefore, a more efficient

method than simple random sampling might be to sample each group separately.

The independent estimates are then averaged, giving each one a weight proportional

to its contribution to the overall mean. Then we would obtain independent estimates

in each sample. Because the variance in each group is smaller, the number of

observations needed to achieve the desired precision may be less than the number

required to obtain the same precision ignoring the groups. This method of sampling

is called stratified sampling. It is called stratified because the technical term for the

population segments is strata.

For example, imagine that we wish to investigate what the mean value of serum

urea is in chronic kidney disease patients on hemodialysis. Suppose we had

information that there was a trend toward an increased serum urea level on patients

with a longer permanence in the dialysis program. Then, we could divide the

population into two strata, for example, one stratum for patients with less than three

years’ permanence and one stratum for patients with three years or more.

Let us say there was a total of 10 000 patients in the first stratum and 5000 in the

second. To perform stratified sampling we would take a simple random sample of,

say, 250 patients in each stratum and obtain the mean and standard deviation of

serum urea in each sample. The combined mean of the two strata is obtained by a

weighted average of the two sample means, and the weight is, naturally, the

proportion of the total population represented by each stratum.

For example, let us say that the mean and standard deviation of serum urea was,

respectively, 37mg/dL and 30mg/dL in the first stratum, and 45mg/dL and 33mg/

dL in the second. The first stratum represents two-thirds of the population and the

second one-third, and these will be the weighting factors. Accordingly, the overall

mean would be 37mg/dL multiplied by 2/3 plus 45mg/dL multiplied by 1/3, giving
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Figure 4.3 Reducing variance by splitting the population in strata.
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an estimate of the population mean of 39.7mg/dL. The standard error of the mean

is also a weighted average of the standard error estimates in each stratum.

Therefore, we multiply the standard error estimate of the first stratum by 1/3 and

the second stratum by 2/3. We cannot add standard errors, but we can sum

variances, so we need to square each weighted standard error before we sum them,

and then we take the square root to get the overall standard error:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30ffiffiffiffiffiffiffiffi
250

p �
1

3

� �2

þ 33ffiffiffiffiffiffiffiffi
250

p �
2

3

� �2
s

¼ 1:528

It does no harm if we use symbols to explain the calculations. We denote by Mi

the mean value of an attribute in each stratum i, by Ni the population size in

each stratum i, and by N the total population. The expression

M ¼
X

Mi

Ni

N

means that, in order to calculate the point estimateM of the population mean m,

we sum across all the i strata the product of the mean Mi of each stratum with

the corresponding weight, that is, the fraction of the population that belongs to

that stratum, Ni/N.

The symbol
P

, which is the Greek letter for ‘S,’ represents a sum. If there

are three strata, called 1, 2 and 3, the above expression translates to

M ¼ M1

N1

N
þM2

N2

N
þM3

N3

N

The variance of sample means is calculated with the following expression:

varðMÞ ¼
X s2

i

ni

N2
i

N2

which reads, sum across all the i strata the product of the variance of sample

means of each stratum with the square of the fraction of the population that

belongs to that stratum.

As usual, we substitute the sample variance s2 for the population variance

s2. To obtain the standard error we take the square root of var(M).

If we are estimating a population proportion, we replace s2 in the

expression by p(1�p), the variance of a binary variable. If we wish to use the

fpc, then the variance of sample means within the strata should be multiplied

also by (Ni� ni)/(Ni� 1) and the above expression would be

varðMÞ ¼
X s2

i

ni

N2
i

N2

Ni � ni

Ni � 1

To sum up, when there is a nominal attribute, or an interval attribute that can be

grouped into categories, related with the variable under study, we can split the

population in strata defined by the values of that nominal attribute. The variance of
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the variable in each stratum will be less than the total variance and, with smaller

variances, we will get the same precision with a smaller sample size.

Stratified sampling may produce standard errors that are smaller than those

obtained with simple random sampling, that is, more efficient estimators (requiring

a smaller sample size to achieve the same accuracy), but only if the means are

considerably different from one stratum to another. If the means do not differ across

strata, the result is evidently the same as with simple random sampling. Because

stratified studies are more complex to conduct, this option should be taken only if

there is evidence that means do differ across the strata. The strata should be defined

in a way that maximizes differences between means, while keeping each stratum as

homogeneous as possible.

From the above considerations it is clear that, in stratified sampling, a single

study variable will benefit from the increased precision afforded by stratification.

Any other variables being studied will not have their accuracy improved unless their

means are also significantly different across the same strata.

The efficiency of stratified random sampling can be increased if the sample size is

not equal in each stratum, but this is possible only if we have more information about

the population. If we know that the standard deviation of an attribute is approximately

constant across strata, the sample size in each stratum may be defined in proportion to

the size of the stratum. The sampling fraction is constant and, therefore, larger strata

will contribute with larger samples. This method is called proportional stratified

sampling (Figure 4.4) and it will always produce more efficient estimators than

simple random sampling, although on occasion the difference may not be substantial.

If we know that the standard deviation of an attribute is different from one

stratum to another, the sample size in each stratum may be proportional not only to

the size, but also to the standard deviation of the stratum. More specifically, the

Population 
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with optimal allocation 

Stratified sampling 

Figure 4.4 The different methods of stratified sampling.
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sample size is proportional to the product of the size of the stratum multiplied by its

standard deviation. Therefore, the sampling fraction increases in strata with larger

standard deviations. This procedure will save observations in strata with small

variances and will allocate them to strata with large variances, keeping the precision

constant across all strata. For this reason, this method is called stratified sampling

with optimal allocation (Figure 4.4).

In proportional stratified sampling, the sampling fraction is constant across strata,

which means that the probability of each individual in the population of being selected

for the sample is the same for all individuals and, consequently, the sampling weights

are also the same. Therefore, calculation of the combined mean and the standard error

can be made by pooling together all observations and proceeding as if it were a simple

random sample. In stratified sampling with optimal allocation, the combined mean

and standard error are calculated in the same way as explained for stratified sampling.

The following example will illustrate the gain that may be achieved by each

sampling method just described. Recall the example of the survey to estimate

the proportion of chronic heart failure patients in the general population. A

study conducted elsewhere reported a proportion of 2.62%. We saw previously

that the sample size for a survey by simple random sampling with an error of

the estimate of 1% with 95% confidence was 980 subjects.

The results of that study also showed that the frequency of chronic heart failure

increases with age. Therefore, we will calculate sample sizes for stratified sampl-

ing using four age groups as strata. We will need the proportions Pi of individuals

with the disease in each stratum, which were reported in the publication, and the

number of individuals of the general population in each stratum, Ni.

Figure 4.5 shows the sample sizes needed to achieve the desired accuracy

with simple random sampling and with the three modalities of stratified sampling.
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Figure 4.5 Sample size requirements for simple and stratified sampling.
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For the calculation of sample size in any type of stratified sampling it is

convenient to use the formula

n ¼
PðN2

i s
2
i =viÞ

N2D2 þP
Nis

2
i

where N is the size of the population, Ni is the size of stratum i, vi is the

proportion of the sample in stratum i, s2
i is the variance of the attribute in

stratum i, and D is the error of the estimate divided by za/2.

4.6 Multistage sampling

In the previous section we covered some methods designed to provide extra precision for

the estimates or, equivalently, to reduce the sample size requirements while maintaining

the desired precision. Those methods, therefore, address both the precision and cost

issues. In this section, we will describe methods that are useful only for reducing the

costs of a survey but at the expense of decreased precision for the same sample size.

To better explain what multistage sampling is, and why it must often be

considered, let us resume the example of the hemodialysis study. Assume that there

are 15 000 patients in dialysis programs and we need a random sample of 500

patients. In this, as in many other situations, creating a sampling frame with the

identification of all 15 000 patients would be exceedingly difficult and costly. On

the other hand, those patients are being treated in hospitals, and it would not be so

difficult to obtain a listing of all hospitals providing that care. A multistage random

sampling of hemodialysis patients could be as follows. First, a simple random

sample of size, say, 10 is taken from a sampling frame of the population of

hospitals. In each selected hospital, we would create another sampling frame, this

time with the identification of all patients undergoing dialysis. From there, we

would take a simple random sample of 50 patients.

Thus, we have a first stage consisting of a sample of hospitals, and a second

stage consisting of a sample of patients within hospitals. Compared to simple

random sampling, there are gains in time, effort, and costs. First, we did not have to

list the entire population, only the first stage units and second-stage units within

those first-stage units that had been selected. Second, in order to observe the

patients we only needed to travel to 10 hospitals, instead of every hospital that

happened to have a patient selected in the sample.

If a complete listing of all hospitals with a dialysis program was difficult to

obtain, we could divide the country into regions and sample a number of them.

Then, hospital lists need be created only for the sampled regions. For example, we

could sample five regions, five hospitals within each region, and 20 patients within

each hospital. This would be a three-stage random sampling. Alternatively, we

could select all patients in each hospital instead of taking a sample of them. This

would be called cluster sampling (Figure 4.6).
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Ideally, in multistage sampling the means and variances should be similar across

the last-stage groups and similar to the mean and variance of the population. If the

last-stage groups have approximately the same number of elements, cluster

sampling is likely to be more effective than multistage sampling.

Of the sampling methods just described, multistage sampling is often the only

feasible one because in most situations it is not possible to enumerate all elements

in the population, though it is possible to enumerate all the elements of each stage.

One problem with multistage sampling, however, is that the analysis is much more

complex than with simple or stratified sampling.

This example illustrates how an estimate of the population proportion of a

given attribute is calculated from a two-stage sample. Let us return to the

hemodialysis study. We said that the total population of hemodialysis patients

is 15 000. Suppose there are 50 hospitals and we decide that the first stage will

include 3 hospitals selected by simple random sampling, from which we would

take a total sample of 500 patients. The first hospital selected had a total of 200

patients in hemodialysis, the second 350, and the third 300. We select a simple

random sample of patients from each hospital of, respectively, 100, 230, and

170. The proportion of the attribute (say, serum urea above two times the upper

normal level) in each patient sample was, respectively, 30%, 40%, and 10%.

In order to estimate the proportion of the attribute in the total population,

we calculate the contribution of each hospital as the product of the observed

proportion with the percentage of the total population accounted for by that

group. The population of the first hospital accounts for 1.3% (¼ 200/15 000) of

the total population, the second hospital for 2.3%, and the third hospital for

2.0%. So, in the first hospital the attribute is present in 30% of 1.3% of the total

population, and it contributes 0.4 (¼ 30%� 1.3%) percentage points to the

total proportion in the population. In the second hospital 40% of 2.3% of the

population have the attribute, so its contribution is 40%� 2.3%¼ 0.9

percentage points, and in the third hospital it is 10%� 2.0%¼ 0.2 percentage

points.

Multistage sampling Cluster sampling 

Figure 4.6 Multistage and cluster sampling.
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We then sum the contributions from all sampled groups to obtain the

contribution of all the sampled first-stage units. The result is 0.4þ 0.9þ 0.2

¼ 1.5 percentage points. The estimate for the entire population is, therefore,

this result multiplied by the number of times there are more hospitals in the

population than in the first-stage sample. There are 16.7 (¼ 50/3) sets of 3

hospitals in the population, and we estimated that each set of 3 hospitals

contributes on average 1.5 percentage points to the total proportion of the

attribute in the population. Therefore, the estimate of the proportion in the

population is 16.7� 1.5¼ 25.05%.

Calculation of the standard error is more complicated and in multistage

sampling is so complex that it should be done only with appropriate statistical

software.

Multistage sampling is usually less efficient than any of the sampling methods

presented previously; that is, for the same sample size the population estimates have

lower accuracy. This is because observations tend to be correlated within each

group in the final stage. For example, if hospitals have different admission criteria,

then patients within a hospital are more similar to each other than they are to

patients in other hospitals. Consequently, the attributes are very homogeneous

within hospitals, but very heterogeneous among hospitals. If the admission criteria

were the same for all hospitals then the attributes would be heterogeneous within

hospitals but very homogeneous among hospitals. The loss of precision in

multistage sampling arises because the heterogeneity among hospitals contributes

much more to the estimate of the population variance than the heterogeneity within

hospitals and, therefore, multistage sampling tends to inflate standard errors in

proportion to the degree of correlation of observations in the last-stage groups.

The proportional increase in the estimate of variance, compared to the estimate

that would be obtained by simple random sampling with the same sample size, is

called the design effect. The design effect increases both with the degree of

correlation of the observations within each last-stage group and the size of the last-

stage group. Therefore, precision of the estimates is gained if the last stages are

designed as small as possible.

Despite the loss of precision in multistage sampling, since significant savings

are made in the creation of sampling frames and travel, part of the resources can be

used to increase the sample size.

In the example above, sampling units were selected by simple random sampling.

This does not need to be so. For example, we could improve the precision of the

estimate of an attribute by stratifying patients on time of permanence in the dialysis

program, and then we would have a combined multistage and stratified sampling.

The combinations of the methods are manifold, and the decision about which

sampling strategy should be employed is frequently a difficult one.

To close our discussion on sampling methods, we will just comment on what is

considered the primary sampling unit (PSU) of a multistage or combined sampling.
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The PSU is the first stage where its elements are randomized. For example, if we

had divided the territory into regions and had selected one hospital at random

from every region, the hospital would be the PSU. Had we included every hospital

in each region and randomized patients within each hospital, the patients would

be the PSU.

4.7 Prevalence studies

Now that we have reviewed the methods for obtaining a probability sample, as well

as the notions necessary for determining the sample size required for a descriptive

study, we will proceed to cover the main designs of descriptive studies.

Very often, descriptive studies are done to estimate the frequency of a given

attribute in the population, such as a particular disease or clinical condition. This is

called the prevalence of an attribute. The prevalence rate is the proportion of the

population having that attribute. Prevalence studies are particularly important types

of observational studies because the prevalence rate is a morbidity index of

populations that is central to epidemiology. Knowledge of the frequency of diseases

is of major importance for patient management, allowing the clinician to plan

efficiently the study of individual patients. For health care managers, prevalence

studies are the basis for the definition of health care policies, strategies, and

resource allocation.

Prevalence studies are typically cross-sectional. These studies have some

particularities regarding terminology and presentation of the results. The population

surveyed is usually called the population at risk and the subjects having the

attribute under study are called cases. Prevalence rates are often presented on a

1000 or 10 000 basis instead of percentages, because disease prevalence rates are

often rather low. Estimates are often presented only as the point prevalence, with

omission of confidence intervals, because studies are usually conducted on very

large samples and, consequently, the error of the estimate can be assumed to be

very small.

One aspect that needs careful consideration in the design of prevalence

studies is the definition of cases, that is, the set of criteria that will allow the

classification of each sampled individual as being a case or a non-case.

Invaluable help may be obtained from a thorough evaluation of the criteria used

in previously published studies, so this is always an obligatory step in the

planning of a study. Additional help may be provided by existing guidelines and

consensus statements for the diagnosis and management of diseases, which often

include a definition of the criteria, methods, and instruments for an epidemiolo-

gical diagnosis. However, it is necessary to keep in mind that epidemiological

surveys are typically conducted on samples of thousands of people and, on most

occasions, it is not possible to carry out a full examination of the individuals.

Therefore, the criteria, methods, and instruments for diagnosing a disease used

in epidemiological surveys are not necessarily the same as the ones used in

clinic or hospital-based studies.
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Screening instruments are often used in prevalence studies (Figure 4.7). These

consist of some kind of measurement that is simple, safe, and inexpensive, and that

enables the investigator to exclude the presence of the disease with reasonable

confidence. The resources, therefore, can be allocated mainly to investigating the

presence of the disease in those subjects that were identified by the instrument.

Structured questionnaires are often used in surveys for this purpose. For a screening

instrument to be valid, naturally, it must have high sensitivity.

4.8 Incidence studies

Prevalence studies are difficult and expensive endeavors, particularly if the

survey is on the general population. There is, however, an easier and less costly

approach that will give approximately the same information, provided the

disease prevalence is not too high. The idea is to identify only the new cases of

a disease occurring in a given time interval, the so-called incidence of the

disease. Since incident cases become prevalent for the duration of the disease,

if there is information on the average duration of the disease, the prevalence

rate can be estimated by the product of the incidence and the average duration

of the disease. For example, if a disease has an estimated incidence rate of 50

new cases a year per 100 000 inhabitants, and if the average duration of the

disease is 20 years, then an estimate of the prevalence rate would be 1000 in

100 000 or 1%.

Or course, the importance of incidence rates is not merely to estimate

prevalence rates. The incidence rates inform about the dynamics of a disease while

Population 
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Cases Inference 

Screening Diagnosis 

Figure 4.7 Schema of a prevalence study.
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prevalence rates are a static portrait of the disease, and often both statistics are

necessary for the characterization of the disease. On the other hand, the incidence

rate is on many occasions a better measure of morbidity than the prevalence rate.

For example, the prevalence of the common cold, that is, the number of people in

the population that at a given moment have the common cold, is a rather small value

but its incidence is extremely high. In diseases of short duration the prevalence will

always be low and, in such cases, disease frequency is better described by its

incidence.

In the limit, if the duration is zero, the prevalence will also be zero regardless of

the incidence rate. This situation occurs every time we wish to study an event, as

often happens in clinical research. Some examples of events that are often the aim

of a clinical investigation are death, adverse drug reactions, major cardiovascular

events, and tumor response to chemotherapy. Every time we study an event, that is,

a change in the patient’s condition from one state to another, the frequency measure

we should use is the incidence.

One extremely important measure of population health is the mortality rate.

Mortality is, of course, evaluated only in terms of its incidence, and the

methodology of mortality studies is the same as for any other medical event.

Mortality studies in patient populations are one of the most common clinical

investigations and are often designed as cohort studies. In those studies based on

populations with a given disease rather than on the general population, the mortality

rate is called the case-fatality rate.

Incidence studies require a cohort design. In cohort studies, a sample of the

population is selected by one of the sampling methods outlined above and followed

over time until the event eventually occurs (Figure 4.8).
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Figure 4.8 Schema of an incidence study.
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4.9 The person-years method

The typical design of an incidence study is the cohort study. In these studies, a

representative sample of the population is followed over time until the events of

interest are observed. These studies are expensive and difficult to manage because

they require regular observation of the individuals for a long time.

Cohort studies always have the problem of individuals dropping out of the

study. If the study lasts for a long time, measured in years, some people will

withdraw from the study, because they moved home, refused to continue, failed to

show up for some reason, developed an incapacitating condition, or even died. In

addition, the study could be concluded before the event occurred in some

individuals.

In these cases, one will have an incomplete follow-up for some individuals.

However, it would be unwise to exclude them from the analysis because they may

have abandoned the study for some systematic reason that might be related to the

condition under study, and excluding them from the analysis would bias the study.

One approach to this problem is the person-years method. This consists of

pooling together all the follow-up irrespective of the subjects. The result of the sum

of all follow-up periods does not convey information on how many subjects were

followed, and therefore the designation of person-years. The number of events is

also summed, and its division by the number of person-years is the incidence rate.

More precisely, the incidence rate estimated with this method is called the

incidence density.

Figure 4.9 shows an example of a cohort study analyzed with the person-years

method. Six subjects were followed over time until the event eventually occurred.

This happened in subjects number 2, 3, and 5. The table shows that the sum of the
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Figure 4.9 Illustration of the person-years method.

80 BIOSTATISTICS DECODED



follow-up periods of the six subjects was 38 years and that the event occurred on

three occasions. The incidence density is, therefore, 3:38 person-years. This number

can, of course, be presented in round numbers for easier interpretation, like 79:1000

person-years or 0.079 person-years or 7.9% person-years. The interpretation is

straightforward: an incidence density of 7.9% person-years means that, if we

observe 100 persons for one year, we expect to observe 7.9 events during that

period. If the event can occur several times in the same subject, for example, an

adverse drug reaction, that value can also be interpreted as the number of events we

expect to observe on one person followed for 100 years.

This method conserves information and avoids excluding incomplete observa-

tions from the analysis. However, bias may be introduced if drop-outs are more

likely to occur in those that are at greater or lesser risk of developing the event,

which is often the case. Therefore, this method should be used only if the number of

individuals dropping out from follow-up is relatively low, a commonly accepted

level being no more than 15% of the total sampled. We will return to this subject

with further details on the analysis of events with cohort studies in the chapter on

longitudinal studies.

4.10 Non-probability sampling in descriptive studies

Sometimes we need information on the characteristics of populations, not for

scientific purposes or clinical decision making, but simply because we wish to gain

some insight on the features, behavior, and patterns in the population that will give

us additional clues to the etiopathogeny, pathology, clinical presentation, or clinical

course, with the hope that such insights will lead to additional hypotheses about the

population that may be verified in further research based on probability samples.

Because of their exploratory nature, the cost of conducting such studies in

representative samples is often not justifiable and investigators turn to non-

probability samples.

For example, a common design of incidence studies consists of sampling

physicians or health care centers, estimating the population covered by those units,

and recording all new cases of the disease occurring during a given time interval,

typically one full year. Suppose 20 primary health centers had been enrolled in the

study, each one providing primary care for a defined population, the sum being the

total population surveyed in the study, say, 150 000 inhabitants. During a whole

year, every new case of the disease was recorded, for example, 75 cases. Therefore,

the incidence rate is 1:2000 per year, or 0.05% per year. If the average duration of

the disease is eight years, the approximate prevalence rate is 0.4%.

This study design is not as reliable as cohort studies based on probability

sampling, because there is no way of knowing whether all new cases were indeed

intercepted by the study centers. Inevitably, there will be cases where people will go

to other centers or private offices, or they may choose not see a doctor at all. On the

other hand, because the subjects are seen at the doctor’s office, there are more

conditions for doing a thorough evaluation of the disease including follow-up
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examinations and, therefore, to make a more accurate diagnosis than is usually

possible with population-based cohort studies. In addition, this design allows large

amounts of clinical data to be collected from each case, which can be used for many

different types of analyses, including the development of disease models. Such is

the aim of centralized patient registries, a methodology widely applied for the

study of diseases that is often based on the non-probability samples.

4.11 Standardization

We saw previously that the analysis of observational studies is mainly based on the

presentation of summary data, point estimates of prevalence or incidence, and the

corresponding standard errors or 95% confidence intervals. Epidemiological

descriptive studies of the general population, however, often include additional

analyses.

Epidemiological studies usually present estimates of prevalence or incidence

rates for the whole population, called the crude rate. Because of the dependence

of morbidity and mortality indexes on age and gender, it is usual and desirable

that separate estimates for males and females, and for each age group, also be

presented. These are called specific rates. Therefore, a study usually presents, for

example, the crude mortality rate and age and gender-specific mortality rates. Of

course, specific rates can be obtained and presented for any population variable, not

just age and gender.

A frequent analysis in epidemiological studies is adjustment. Adjustment is an

analytical method used when one wants to compare crude rates between two or

more different populations. Because of the dependence of disease on age and

gender, a direct comparison of crude rates between two populations can be

misleading if they are not similar in age and gender distribution. Adjustment allows

us to estimate expected crude rates if the two populations had exactly the same age

and gender structure. In epidemiology, the procedure to calculate adjusted rates is

called standardization.

For example, suppose we wish to compare the crude mortality rate between two

regions, called the South and North. The crude annual mortality rate in the

South is 300 per 100 000 inhabitants, and in the North 430 per 100 000

inhabitants. The mortality rate is higher in the North, that is a fact, but this may

not mean that people in the North have worse health. They could just be older

than Southerners. Therefore, we must calculate age-adjusted mortality rates to

remove the effect of age on mortality and thus be able to compare mortality

rates directly.

In the method of direct standardization, we first define the age groups.

Then, we use one of the populations as the reference population, for example,

the South. In this population we calculate the relative frequency of each age

group, as shown in the table in Figure 4.10. In the other population, the North,
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we estimate age-specific mortality rates. We can now estimate what would be

the expected mortality rate of the North population if the age distribution were

the same as in the South population. It would mean that 0.2% of the age group

0–4 years old, representing 14% of the population, died, plus 0.1% of the age

group 5–14 years old, representing 22% of the population, died, and so on until

the last age group. In other words, we multiply, in each age group, the age-

specific mortality rate of the North population by the relative frequency of that

age group in the South population, and sum the result over all the age groups

The final result is the direct age-adjusted mortality rate, which we can

now compare to the crude mortality rate in the reference population. In this

example, the age-adjusted mortality rate in the North population was 264 per

100 000 inhabitants, well below the crude mortality rate of 300 per 100 000

inhabitants in the South. Therefore, it turned out to be the South population that

had worse health.

Whenever we wish to compare two rates estimated in two populations it is of

major importance to adjust the estimates by population attributes that may influence

those rates, because if the distribution of these attributes is not identical in the two

populations, direct comparison of crude rates may lead to the wrong conclusions.

This is called confounding and we will cover this subject in more detail further on.

For now, let us just say that, in observational studies, every time we wish to compare

estimates from different populations we must consider the need to adjust for one or

more population attributes.
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Figure 4.10 The direct standardization method.
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This same method is used to make projections of population estimates to

different populations. For example, if we wish to transpose the results of a

prevalence study conducted in a country in order to estimate the prevalence of a

disease in a different country, we can use the direct standardization technique to

calculate age-adjusted rates, using the age-specific prevalence rates of the country

in which the study was conducted and the distribution by age groups in the country

to which we want to project the prevalence rates. The example of Figure 4.10 also

illustrates, therefore, the projection of mortality rates of the North population to the

South population.

A more common problem in epidemiological research is the comparison of

morbidity or mortality rates estimated for a segment of the population to the

corresponding rates in the general population knowing that the age structure of

both populations is different. A situation such as this is typically seen in

studies of occupational health, where one might wish to compare disease rates

seen among workers exposed to some environment to the rates seen in the

general population.

In such problems, the direct standardization method might not be adequate

if the estimates of age-specific rates had been obtained from a relatively small

sample, because then they would have low precision. In the indirect
standardization method, the problem with the small number of elements in

each age group is avoided by calculating instead what would be the expected

number of events if they occurred in each age group with the same frequency

as in the general population. The observed and expected number of events can

then be directly compared.

For example, consider a study in which we want to compare the annual

mortality rate of workers in a certain type of manufacturing activity to the

annual mortality rate of the general population. The latter was obtained

from official statistics for the entire population and the former from a

descriptive study based on a probability sample of workers in that industry.

This sample consisted of 6800 workers, and we have the age distribution

and the number of deaths occurring during one year in each age group. On

the other hand, we have the age distribution of the general population and

the age-specific mortality rates. As shown in Figure 4.11, if workers were

subject to the same mortality rate as the general population, we would

expect that 0.1% of the 950 workers in age group 15–24 years old had

died. That is, the expected number of deaths in that age group was 0.95

workers. In the age group 25–34 years old, 0.1% of 2100 workers, or 2.1

workers, were expected to have died. And so forth. In the end, if the

mortality among workers were the same as in the general population, we

would expect 24 deaths.

The observed number of deaths among workers was 42, that is, 175% of the

mortality rate of the population, which suggests an excess mortality among

workers.
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The ratio of the observed mortality to the expected mortality, 175% in the

example above, is called the standardized mortality ratio, a statistic so frequently

used in epidemiology that it is usually referred to only as SMR. As the SMR in our

study was obtained by sampling, then it is of course subject to sampling variation.

Therefore, we must find confidence limits for the SMR. Approximate 95%

confidence limits can be obtained by the estimated SMR plus or minus 1.96

multiplied by the quotient of the square root of the observed frequency and the

expected frequency, that is, SMR� 1.96�p
(O/E). In the previous example, the

result would be 122 to 228%. Given this result, we could say with 95% confidence

that mortality was increased among workers.
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Figure 4.11 The indirect standardization method.
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5

Analytical studies

5.1 Design of analytical studies

We have seen that descriptive studies are an essential instrument to document in

detail the various features of the condition being studied. However, at a very early

stage in our efforts to describe and understand a given clinical condition we may be

interested in exploring associations between variables. The importance of identify-

ing associations is, as was discussed in Section 1.3, because the presence of an

association represents the first condition for establishing a cause–effect relationship.

Understanding how the various factors present are related and the strength and

direction of that relationship allows us, for example, to develop disease models that

can be used for several purposes, such as classification, prediction, and identifica-

tion of opportunities for intervention. The objective of analytical studies is,

primarily, to uncover those relationships. Some analytical studies, but not all, also

allow us to establish the order factor, which informs us not only of the existence of

an association, but also of its direction.

For example, suppose we wish to investigate whether there is an association

between body mass index and respiratory development in children. For this

purpose, we conduct a cross-sectional survey in a probability sample of children

and in each one we measure the body mass index and perform a laboratory test

of respiratory function. Further suppose that, while inspecting the data, we found

that children with an abnormal low value in the respiratory test had on average a

lower body mass index than those with a normal test. This observation may

allow us to conclude, under certain conditions that we will discuss later, on an

association between respiratory function and body mass in children. However,

this study will not allow us to understand the direction of that association

because evidence of an association simply means that two attributes go together,

not which one, if any, determined the other (unless one is a terminal event, like

death). It could be that impaired respiratory development causes children to gain
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less weight, or that poor physical development in children causes a slower rate

of pulmonary development, or that some other factor causes both poor physical

and respiratory development.

This type of study is called a cross-sectional analytical study. It is not unlike

the cross-sectional descriptive study regarding design and sampling methodology,

but it is very different in three essential aspects: its objective, which is specifically

to discover eventual associations between respiratory function and one or more

patient attributes; its dataset, which includes measurements of patient attributes

suspected of being associated with respiratory development; and its sample size

requirements, which may not be the same as those for a descriptive study.

If we wish to understand the sense of an association we need a different study

design. We need a design that allows us to evaluate an order factor. A cohort

analytical study may, in some situations, provide evidence of an association and an

order factor. For example, suppose we want to investigate an eventual association

between body mass index and stroke in men. We would select a random sample of

men over 40 years old who have never had stroke and observe each one of them over

a period of time until a stroke occurred. If the body mass index was on average higher

in those who suffered stroke, we would be inclined to conclude on an association

between body mass and stroke and also, because of the study design, that stroke could

not possibly have preceded weight gain. Again, we could not establish causality

because there could be another factor that caused both overweight and stroke.

As with descriptive cohort studies, analytical cohort studies are used when one

wants to investigate possible associations between events and patient attributes. The

study design is similar to that of a cohort descriptive study except for the objectives,

data collected, and sample size.

In situations where we are investigating eventual associations between a single

characteristic and one or more attributes, and that characteristic can be represented

by a binary variable, like the presence of a given disease state or the occurrence of

some event, the existence of associations between that variable and each of the

attributes is established by splitting the total sample into two groups, with and

without the attribute, each group representing a random sample of the population

with and without the variable, respectively. The mean value of each attribute can

then be compared between the two populations and, if a difference is found, one can

conclude on the existence of an association between the attribute and the variable

being investigated. We will shortly present the statistical methods that allow one to

conclude on the existence of an association between a binary variable and one

attribute. For the moment, we will discuss some study designs that are more

efficient than the previous ones.

Assume we want to search for possible etiological factors of some disease, for

example, chronic hepatitis C. We will conduct a study with the specific aim of

investigating the association of several attributes of individuals with the presence of

chronic infection by the hepatitis C virus and, therefore, an analytical study is

required. Consequently, we design a cross-sectional study on a probability sample

of the general population and we decide on a sample size of, say, 6000 subjects.

Given that the prevalence of this disease, as is often the case with many diseases, is
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rather low and on the order of 1.5%, in the end we will have collected data from

about 90 cases of chronic hepatitis C. In the analysis we would compare the means

of several attributes of the subjects between the small sample of 90 cases and the

huge sample of 5910 non-cases.

In a situation like this, a case–control study would be much more efficient. In

such a study we select, independently, one random sample from the population of

cases and one random sample from the population of non-cases. In this fashion we

could define the sample size of the two samples, called cases and controls, in a way

that would better serve the objectives of the study. Just to give an idea of the savings

achieved with a case–control design over a cross-sectional design, we could design

a case–control study equivalent to the one in the example above in terms of its

ability to show associations, with only 185 cases and 185 controls, that is, with only

6% of the sample size of a cross-sectional study.

Case–control studies are also called retrospective studies because, as

subjects are observed only once and data about the disease and a set of putative

contributing factors are collected at the same moment, then one of them must

have existed before the observation took place. In the example of the study on

chronic hepatitis C, the presence of the disease is directly observable and verifi-

able, but information on putative causes, for example, blood transfusions, needle

stick injury, dental procedures, etc., can only be obtained by recall, and recall

data is prone to inaccuracies.

Stronger evidence of an association between exposure to putative contributing

factors and a given disease state may be achieved with a cohort study. If the

investigation concerns only one factor, if this factor can be represented by a binary

variable, and if its prevalence in the population is very low, then we may select

approximately equal-sized random samples, one from the population with the factor

and the other from the population without the factor, thus saving a large number

of observations. The two cohorts of exposed and non-exposed to the factor will

then be observed repeatedly for a period of time, allowing for the disease to

develop. We can then verify whether the frequency of the disease is different in the

two populations and eventually conclude that an association is likely to exist. Both

cohorts are selected from the population without the disease, and therefore this

study may also provide evidence of an order factor.

This design is also called a prospective study because data is collected after the

study starts. Therefore, recall is minimized or non-existent and the data is in general

of much higher quality than in case–control studies. On the other hand, as pointed

out earlier, cohort studies are costly, difficult to manage, subjects have a tendency to

drop out from the study, and the investigation often takes a long time. Nevertheless,

properly designed and conducted cohort studies are generally considered the most

reliable, accurate, robust, and powerful methodology in observational research.

Analytical studies are of major importance to epidemiological and clinical

research. The case–control study is prevalent in medical journals, because it is

relatively easy to manage and conduct and often provides evidence of associations

that may be worth pursuing in experimental studies. Often the greatest difficulty in

setting up a case–control study is the selection of appropriate controls.
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As a rule, controls should be sampled from the same population as cases, and in

some investigations this may require a probability sample of the general population.

For example, in a case–control study to investigate the association of patient

attributes with hospital survival from an episode of acute pancreatitis, it would be

easy to obtain samples of cases and controls because both samples would be

selected from the population of patients admitted to the hospital with acute

pancreatitis. However, if the aim of the investigation were to identify associations

between subject attributes and the occurrence of an episode of acute pancreatitis,

then a clinical investigator would have no major difficulty in obtaining a sample of

cases from hospital admission for acute pancreatitis, but in order to get the controls

a population survey would be required.

To circumvent this difficulty, a partial solution sometimes employed is the

matched case–control study. In this design, controls are selected at random from

the general population according to a set of predefined attributes, for example, age

and gender, each case having a corresponding control with the same values in that

set of attributes.

A more reliable alternative which is gaining in popularity is the nested case–

control study. In this design, a cohort is assembled from a random sample of the

target population. The subjects are observed regularly and, each time a case

emerges, the investigator selects a control at random from the subjects still at risk.

For example, assume that we want to investigate patient attributes associated with

nosocomial infections. In a nested case–control design we would select a random

sample of patients admitted to hospitals and observe this cohort. Whenever a patient

developed a nosocomial infection we would select a control at random from the

remaining sample. The name of this design stems from the fact that it is a case–

control study nested within a cohort.

Compared to the standard cohort study, the nested case–control study has the

benefit of requiring the measurement of attributes only in those subjects that are

selected as controls rather than in the entire sample, with substantial savings in the cost

of the investigation. On the other hand, the population for analysis will be much

smaller and the power of the study to identify associations will be significantly

reduced. Compared to the case–control study, the nested case–control design has the

benefit of a control sample comparable to the cases and of data being collected

prospectively, but at a higher cost than in the standard case–control study.

Another approach to selecting controls is the case–crossover design, which
uses each case as its own control but has the limitation that it can be used only

when one wants to investigate the immediate effects of an exposition. For example,

assume we want to investigate whether an occasional intake of non-steroidal anti-

inflammatory drugs (NSAIDs) increases the risk of acute gastrointestinal bleeding.

In a case–crossover study we would select individuals admitted to a hospital with

an episode of acute gastrointestinal bleeding, and exclude those with chronic

administration of NSAIDs. Each patient would be asked whether a NSAID had

been administered in the period of time immediately preceding the episode, say,

during the previous 24 hours. This exposure would be compared to the exposure of

the same individual in a previous time period, which would be constant for all

cases, say, in the day preceding the bleeding episode by two weeks. If the
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frequency of exposure to NSAIDs on the day of the hemorrhagic episode was

significantly higher than on the day serving as the control, then an association

between occasional NSAID intake and gastrointestinal bleeding could be

established. This design, however, would not allow us to conclude whether chronic

administration of NSAIDs would lead to increased risk, in the long run, of upper

gastrointestinal bleeding, hence the general designation of immediate effects

model for this kind of design.

5.2 Non-probability sampling in analytical studies

A major difference between descriptive studies and analytical studies is that the

purpose of the former is the estimation of population parameters, while in the latter

this is usually not the focus of the research. Rather, the emphasis is on uncovering

relationships among variables. On occasion we are interested in estimating the true

difference between population means, but in the vast majority of analytical studies

this is not the primary research aim. The primary aim is to obtain evidence that an

association is very likely to exist.

It is generally accepted that, although the means and proportions of attributes

may vary among different segments of a population, the direction and strength of an

association between variables does not vary greatly. For example, in a study to

investigate the association between glycemic control and retinal changes in

diabetics, it is very possible that the proportion of diabetic patients with glycemic

control and the proportion with retinal changes vary among the populations

observed in different health care centers, but the relationship between the two

variables is unlikely to vary much.

This is the reason why non-probability samples are often used, and generally

regarded as valid, in analytical studies. Consequently, analytical studies are

regularly conducted in health care facilities, with samples recruited from the

population of patients attending those centers. Because subjects are selected for the

sample because they are easy to access and not through a random process, this

sampling method is called convenience sampling.

Convenience sampling can be used in descriptive surveys and in analytical

studies but, for the reasons explained above, convenience samples are considered

much less reliable in descriptive studies than they are in analytical research, provided

that some assumptions hold. The basic assumptions are, accepting that relationships

between variables do not vary appreciably between health care centers, that the

center where the research is being conducted is no different in any particular way

from any other health care center, and that patients observed in that center are also

no different in any particular way from patients attending other centers.

If all these assumptions are true, then observations of relationships between

patient attributes in one health care center could be regarded as random and

representative of the relationships in the population, on the condition, of course, that

the sample was itself random.

Therefore, patients have to be selected for the sample according to one of the

methods described earlier, that is, by simple, systematic, or consecutive sampling.
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By far the most common sampling method is consecutive sampling, whereby all

patients that belong to the target population that attends the health care center are

enrolled into the study. Systematic sampling should in general be avoided because

of its sensitivity to periodicities in the sample.

5.3 The investigation of associations

We saw in Section 5.1 an association between two variables was intuitively

established when one observed that the values taken by one of the variables were

not the same for all values of the other variable. For example, in a case–control

study we want to investigate an association between the binary variable that

classifies subjects as cases or controls, say, the presence of a given disease, and an

attribute of the subjects. We would say that an attribute, for example, age, was

associated with the disease if the mean age were different in cases and controls. If

the values of the attribute age were unrelated to the values of the attribute disease,

then there would be no reason for the mean age to be different between subjects

with and without disease.

If we have two binary variables, an association is identified if the proportion of

individuals with one attribute is different between the two groups defined by the

values of the other attribute. Gender and disease are examples of two binary attri-

butes. An association between gender and disease exists if the proportion of one

gender is different between those with and without the disease or, essentially the

same, the proportion of individuals with the disease is different in males and females.

Therefore, what we have here is a general rule for establishing an association

between attributes. We say there is an association when we find evidence that

the mean value taken by one attribute is different for different values taken by the

other attribute.

Whenever we look at the results of a case–control study, or for that matter for the

results of any analytical study, we must always keep in mind that the observed means

and proportions were obtained from samples and that, because of the sampling

variation, means and proportions will always be different between the samples of cases

and controls. We need, therefore, a method that allows us to decide whether the

observed difference between sample means and proportions can be attributed to a true

difference between the means and proportions in the two populations, because only

then will we have evidence of an association, or that can be explained by random

sampling variation. In other words, we need to estimate the true difference between

population means and proportions using the results observed in our samples.

In the next sections we will see how statistical methods can help us say how

likely it is that an association exists between a binary and an interval variable, and

between two binary variables. Afterward, we will see how to investigate

associations between two variables with all the combinations of scales of

measurement: binary with categorical and ordinal; categorical with categorical;

ordinal and interval; ordinal with ordinal and interval; and interval with interval.

Finally, we will see how to investigate an association between binary, categorical,

and interval variables with a special type of variable, events.
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5.4 Comparison of two means

Suppose we want to investigate whether an association exists between diabetes

mellitus and total serum cholesterol levels. We design a study and take a sample

of 86 individuals with diabetes mellitus and a sample of 90 controls without the

disease. In the first sample, the mean total serum cholesterol level was 250 mg/

dL with standard deviation 42 mg/dL and, in the second, 230 mg/dL with

standard deviation 38 mg/dL. Therefore, as we are studying a binary variable

(diabetes) and an interval variable (total serum cholesterol), the appropriate

method for showing an association between the two variables is a comparison of

cholesterol means between the two populations. If the population means are

equal, we cannot conclude on an association, but if they are different, then we

will have evidence of the association. In other words, if the difference between

the population means is zero, then we will not conclude on an association,

but if the difference is not zero, we will say an association is likely. The

problem, then, resides in the estimation of the true difference between the two

population means.

In this example, the difference between the two sample means is 20mg/dL.

However, if we repeated the study with two other samples, we would certainly

obtain another value for the difference between sample means. Because sample

means are subjected to sampling variation, so are their differences. Therefore, the

difference between sample means is also a random variable. Accordingly, we can

use our data to estimate the true value of the difference between population means,

as we did when we used our data to estimate a population mean.

For this, the first thing we must do is to ask ourselves what can be said about the

distribution of differences between the means of samples obtained from two populations.

If the samples are large, we know from the central limit theorem that both

sample means come from normal distributions. From the properties of the normal

distribution we know that the difference between variables with a normal

distribution also has a normal distribution. Therefore, the differences between

means of large samples must have a normal distribution.

We also know that the mean value of sample means is equal to the population

mean. From the properties of means we know that when two random variables are

subtracted, the mean of the resulting variable is equal to the difference between the

means of the two variables.

Returning to our example of total cholesterol and diabetes, from the above

considerations we know by now that the difference of 20mg/dL between our

sample means is an observation from a random variable with a normal distribution.

We also know that the mean of that normal variable is equal to the true value of the

difference between the two population means of total cholesterol, which is the

quantity we want to estimate.

Therefore, we already know the distribution of the differences between sample

means and the value of one of its parameters, the mean. All that remains for the

complete description of that distribution is to know the value of the other parameter,

the variance.
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As the two samples are independent, we know from the properties of variances

that when two variables are subtracted, the variance of the resulting variable is the

sum of the variances of the two variables. Remember that the two variables here are

sample means, so their standard deviation is called the standard error of the mean.

The value of each standard error is equal to s/
p
n and the variance of sample means

is, thus, equal to s2/n. Therefore, when we subtract the two variables, the variance

of the resulting variable is equal to the sum of their variances, that is,

s2
1=n1 þ s2

2=n2. The square root of this quantity is the standard error of the

difference between sample means.

In conclusion, for the value of 20mg/dL, the difference between the means of

two large samples, we can say that it is an observation on a random variable with the

following properties:

� It has a normal distribution.

� Its mean is the difference between the two population means.

� Its standard error is the square root of the sum of the two variances of the sample

means.

Because the samples are large, each variance of the sample means can be

estimated with good accuracy from our data using the sample variance divided by

the sample size.

Therefore, the standard error of the difference between sample means can be

written

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

n1
þ s2

2

n2

s

and can be estimated from the sample data, with negligible error, by

SE� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

þ s22
n2

s

Now we have everything we need to analyze the problem presented in the

beginning of this section (Figure 5.1). To estimate the standard error of the

difference between means of large samples, we sum the square of 42 divided by 86

and the square of 38 divided by 90, obtaining 36.56. The square root of this

quantity, 6.05mg/dL, is the estimate of the standard error.

We know, because we have a normal distribution, that 95% of the differences

between sample means will be less than 1.96 standard errors away from the

difference of population means. We multiply 1.96 by the standard error and obtain

11.85mg/dL. Therefore, the difference we observed between our samples means
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has a 95% probability of being less than 11.85mg/dL away from the true difference

between population means. Consequently, with 95% probability, the true population

difference must be a value no smaller than 8.15mg/dL (20mg/dL� 11.85mg/dL)

and no greater than 31.85mg/dL (20mg/dLþ 11.85mg/dL).

We conclude that with a probability of 95% the interval 8.15mg/dL to

31.85mg/dL contains the true value of the difference between population means.

This also tells us that, if the two population means were equal, the probability of

obtaining a difference of 20mg/dL or larger between sample means would be less

than 5%. Consequently, our observations are not consistent with the hypothesis of

equal population means, and we may exclude that hypothesis with a 95%

confidence level.

In summary, the method for investigating an association between a binary and

an interval variable is to compare the means of the interval variable between the

populations defined by the two levels of the binary variable. Confidence limits for

the difference in population means are computed, applying the same concepts used

for making inferences from sample means. If the confidence interval does not

contain the value 0, we conclude on a difference between population means and

on an association between the two variables and, in addition, we obtain an estimate

of the true size of the difference between population means. If the confidence

interval contains the value 0, this means that any of the two populations may have

a higher mean, or they have the same mean. Therefore, in that case we cannot

conclude anything.
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between sample means 
are within this interval 
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Figure 5.1 Steps in the construction of 95% confidence intervals for the difference

between two population means in the case of large samples.
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5.5 Comparison of two means from small samples

Let us now suppose that the mean serum cholesterol levels in the example of the

previous section were not obtained from large samples, but from small samples of

eight diabetics and nine non-diabetics. As was discussed in the section on

inferences from small sample means, we cannot apply the same reasoning as if they

were large samples. In the first place, the central limit theorem does not apply and,

therefore, the distribution of the differences between sample means can be assumed

to be normally distributed only if the attribute also has a normal distribution. In the

second place, the estimates of the standard error obtained with the sample standard

deviation are not accurate.

We have seen that the latter problem can be solved by substituting Student’s t

distribution for the normal distribution when finding the number of standard errors

that define a given confidence interval. However, this solution is not valid for the

present situation of differences between means. This is because the t distribution

cannot be used if the standard error estimate is based on the sum of two different

variances, as was done with large samples.

The problem has a solution if the variances are equal in the two populations. In

that situation, the two sample variances can be seen as two independent estimates of

the population variance. Therefore, they can be combined to provide a single, better

estimate of the population variance. We do this by calculating a weighted mean of

the two sample variances using the number of degrees of freedom of each variance,

that is, the sample size minus one, as a weighting factor. So, we add the two sample

variances, each multiplied by its weighting factor (n� 1), and we divide the total by

the sum of the weighting factors (n1� 1þ n2� 1, or n1þ n2� 2).

We use this estimate of the common population variance of the attribute to

calculate each variance of the sample means. Then the variance of the difference

between sample means can be estimated by adding the two variances of sample

means, obtained in both cases with the same estimate of the variance. The square root

of that quantity is the standard error of the difference between sample means.

The number of standard error estimates on each side of the difference between

population means that define a given confidence interval is obtained from Student’s

t distribution, instead of the normal distribution. However, because the variance was

estimated by combining two independent variance estimates, the number of degrees

of freedom of Student’s t distribution is now the total number of observations in the

two samples, minus two.

Let us return to our example where we wanted to investigate an association

between total serum cholesterol and diabetes using a sample of eight diabetics

and nine controls. In order to be able to find the 95% confidence interval for the

difference between the means of the two populations we will have to assume

that the distribution of total serum cholesterol is normal and that its variance is

equal in both populations.

If the variance is equal in both populations we only need one estimate of the

population variance. Using both sample variances s21 and s22 we compute an
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estimate of the population variance s2 of cholesterol with a weighted average

of the sample variances, as follows:

s2 ¼ s21ðn1 � 1Þ þ s22ðn2 � 1Þ
ðn1 � 1Þ þ ðn2 � 1Þ

s2 ¼ 422 � 7þ 382 � 8

8� 1þ 9� 1
¼ 1593:3

Now we obtain estimates of the variance of the sample means by dividing

the estimate of the variance of cholesterol by the sample size. For the diabetics,

the variance of sample means is estimated as 1593.3/9 and for the controls as

1593.3/8. The estimate of the standard error of the difference between sample

means is the square root of the sum of the two quantities:

SE� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

n1
þ s2

n2

s

The result is 19.4mg/dL and this is the value of the standard error of the difference

between sample means estimated from the data in the sample. In Student’s

t distribution with 8þ 9� 2¼ 15 degrees of freedom, 95% of the observations

are less than 2.131 standard error estimates from each side of the mean.

In our study we observed a difference between sample means of 20mg/dL.

We now know that this value, in 95% of the cases, does not differ by more than

2.131� 19.4¼ 41.3mg/dL from the difference between the two population

means. Accordingly, the difference between the two population means must be

a value between �21.3 and 61.3mg/dL.

In other words, mean serum cholesterol level may be lower in diabetics,

down to 21.3mg/dL, or may be higher, up to 61.3mg/dL. Since the value 0 is

within this interval, serum cholesterol levels may also be equal in diabetics and

non-diabetics. Our study, therefore, is inconclusive.

In summary, for the case of small samples an interval estimate of the difference

between population means can be obtained if, in both populations, the distribution

of the variable is normal and the variances are equal. In that situation, a single

estimate of the variance can be obtained by combining the two variances and used

for estimating the standard error of the differences between sample means. The t

distribution with the appropriate degrees of freedom (total number of observations

minus two) will give the number of standard error estimates on each side of the

mean that include the desired proportion of observations (Figure 5.2). The

confidence limits are found in the usual way.

To conclude, it is convenient to note that, if the attribute has a normal

distribution, then it is usually safe to assume that the two population variances are

approximately equal. Furthermore, even if the population variances are not equal,

the method just presented is still valid as long as the two samples are approximately

of equal size. It is also valid if the distribution of the variable is not normal,
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provided that the departure from the normal distribution is not too great. Because

this method is still valid for conditions where the assumptions are not completely

met, it is said to be robust.

5.6 Comparison of two proportions

When an association between two binary attributes is being investigated, the

appropriate method is to compare the proportion of individuals to one attribute

between the two groups defined by the values of the other attribute. For example,

an association between gender and a disease is investigated by comparing the

proportion of one gender in those with the disease and without the disease or,

equivalently, the proportion of individuals with the disease in males and

females.

We know that sample proportions are observations from a binomial variable.

From the properties of variances, we can estimate the variance of the differences

between sample proportions by the sum of the variances of the two sample

proportions. We saw earlier that the variance of the sample proportions is the

product of the proportion of subjects with the attribute and the proportion of those

without the attribute, divided by the sample size. We also saw that in large samples

no significant harm is done if we estimate this quantity from our data. Therefore, we

can obtain an estimate of the standard error of differences between sample
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Figure 5.2 Steps in the construction of 95% confidence intervals for the difference

between two population means in the case of small samples.
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proportions using the observed sample proportions by adding the two variances of

sample proportions and taking the square root.

If the sample sizes are large, we can use the binomial approximation to the

normal distribution and obtain from the latter the number of standard errors that

must be counted on each side of the mean of the distribution to define a given

proportion of observations, typically 1.96 standard errors for 95% confidence

intervals. Then the confidence limits for the difference in the population proportions

are found by the usual method (Figure 5.3).

For example, consider a sample of 85 individuals with a given disease, and a

sample of 70 without the disease. There are 58 males in the first group (67.4%)

and 33 in the second (47.1%). We want to find confidence limits for the difference

in the proportion of males in the populations with and without the disease, to

understand whether the observed difference would be likely if the population

proportions of men were equal.

The observed difference in the proportion of males is 20.3 percentage

points. The sample sizes are adequate for using the binomial approximation to

the normal distribution. We first estimate the standard error of the sample

differences with our data. The variance of sample proportions is

varðPÞ ¼ pð1� pÞ
n
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Figure 5.3 Steps in the construction of 95% confidence intervals for the difference

between two population proportions.
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According to the properties of variances, the variance of the difference between

sample proportions P1�P2 is the sum of the variances of P1 and P2:

varðP1 � P2Þ ¼ p1ð1� p1Þ
n1

þ p2ð1� p2Þ
n2

The standard error of P1�P2 is

SEðP1 � P2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1� p1Þ

n1
þ p2ð1� p2Þ

n2

s

and an estimate of the standard error can be obtained by substituting p1 and p2
for p1 and p2. The estimated standard error of P1�P2 is

SE�ðP1 � P2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1� p1Þ

n1
þ p2ð1� p2Þ

n2

s

The variance of the sample proportion of males among the diseased is

0.674� 0.326/85, and among the non-diseased it is 0.471� 0.529/70. The

standard error of the difference between sample proportions is the square root

of the sum of the two variances. Using the data we collected the result is

0.0784 or 7.84%.

Because we are using the normal approximation, the lower limit of the 95%

confidence interval is the observed difference minus 1.96 standard errors, that

is, 20.3% minus 15.4% or 4.9%. The upper limit is 20.3% plus 15.4%, or

35.7%. The confidence interval does not include zero, and therefore we reject

with 95% confidence the possibility of equal population proportions and

conclude on an association between gender and the disease.

5.7 Relative risks and odds ratios

Another way of expressing the differences between two quantities is to take their

ratio. If the ratio is 1, then the two quantities are equal; if it is greater than 1, then the

first quantity is larger, otherwise the ratio is smaller than 1. Ratios are not commonly

used for comparing interval variables, but they are very often used for proportions.

Consider a study for evaluating an association between a binary attribute and a

disease. We want to investigate whether the proportion of diseased individuals is

different between those having the attribute and those who do not. The ratio of the

two proportions tells us how many times the disease is more frequent in those with

the attribute than in those without it. For example, if the ratio is 3.5, this means that

the disease is 3.5 times more frequent in those with the attribute than in those

without it. If the ratio is 0.2, this means that the disease is five times less frequent in

those with the attribute. If the ratio is 1, then the two proportions are the same.

Of course, we can also take the ratio of the prevalence of the attribute in the

diseased and non-diseased and obtain a measure of association between the
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attribute and the disease. But since we are usually interested in the disease, not in

the attributes, it would probably not be very informative to know how much more

frequent the attribute is in the diseased. For example, consider the data in

Figure 5.4 from a prevalence study of chronic obstructive pulmonary disease

(COPD) on a random sample of the general population. The proportion of ever-

smokers among the diseased is 65.4% and among the non-diseased 35.5%. The

ratio is 1.8, meaning that it is 1.8 times more likely to find a smoker among

patients with COPD than in people without the disease. On the other hand, the

proportion of patients with COPD among the ever-smokers is 3.0%, while 0.9%

of the never-smokers have the disease. The ratio is 3.3, meaning that COPD is 3.3

times more likely in an ever-smoker than in a never-smoker. Both ratios are the

same measure of association, but the latter is of greater clinical interest as it is

usually the one that we care about.

The ratio of two proportions is called the risk ratio or, more commonly, the

relative risk. It is extensively used in epidemiology as a measure of association.

In epidemiological terminology, therefore, the relative risk is said to be the ratio of

the prevalence of disease among the exposed to the prevalence among the non-

exposed. In our example, 3.3 is the relative risk of COPD among ever-smokers to

never-smokers.

An alternative way of presenting proportions is as odds. Proportions are the

ratio of positive events to the total number of events, while odds are the ratio of

positive events to negative events. For example, if in 60 observations we have 20

positive events, the proportion is 0.33 (20 : 60) and the odds are 0.50 (20 : 40).

We can divide the odds of having the disease among those with the attribute by

the odds of having the disease among those without the attribute, and obtain a

measure that is called the odds ratio. The odds ratio, therefore, is the ratio of the

odds of disease among the exposed to the odds of disease among the non-exposed.

In our example, the odds of COPD among the exposed (ever-smokers) is 136/

4387¼ 0.031 and among the non-exposed (never-smokers) 72/7980¼ 0.009. The

odds ratio of COPD among smokers is 0.031/0.009¼ 3.4. The odds ratio is used

extensively not only in epidemiology, but in clinical research as well.

Total 

ever-smokers 

never-smokers 

with 
COPD 

 208 

 136 

 72 

without 
COPD 

 4387 

 7980 

 12367 

Total 

 4523 

 8052 

 12575 

Disease 

Exposure 

Figure 5.4 Data from a prevalence study of chronic obstructive pulmonary

disease (COPD) in the general population.
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As we have just seen, the relative risk is the ratio of two prevalences or two

incidences. Therefore, this measure can be estimated only from study designs where

it is possible to estimate the prevalence or incidence of the cases among the exposed

and the non-exposed. Estimates of disease prevalence in the two populations can be

obtained in cross-sectional and cohort studies, and relative risks be estimated from

these designs, as well as odds ratios. However, in case–control studies we do not

have such estimates of disease prevalence. Instead, we have estimates of the

proportion of the exposed among those with the disease and among those without

the disease. Therefore, we can estimate the odds ratio of the exposure in the

diseased to the non-diseased. Fortunately, the odds ratio of exposure in the diseased

to the non-diseased is the same as the odds ratio of disease in the exposed to the

non-exposed. Furthermore, if the disease has a low prevalence (as is usually the

case) the odds ratio is very similar to the relative risk. This is why the odds ratio is

also called the approximate relative risk.

We can easily verify these properties of the odds ratio. In our example on

COPD, the study identified 136 people with the disease among the 4523 exposed

and 72 people with the disease among the 8052 non-exposed. The odds of exposure

among the diseased are 136:72, among the non-diseased 4387:7980, and the odds

ratio of exposure among the diseased to the non-diseased is 3.44. Conversely, the

odds of disease among the exposed are 136:4387, among the non-exposed 72:7980,

and the odds ratio of disease among the exposed to the non-exposed is again 3.44.

Let us now find the relative risk. The prevalence of disease among the exposed is

136:4523 and among the non-exposed 72:8052. The relative risk is, therefore, 3.36,

which is very close to the value of 3.44 we obtained for the odds ratio.

These properties of the odds ratio make it a very useful measure of association,

in particular because it can be estimated in all types of analytical studies, including

case–control studies, which are by far the most common analytical studies in

clinical research. Furthermore, the odds ratio has a number of mathematical

properties that make it an extremely important quantity in biostatistics.

5.8 Attributable risk

We saw in the previous section that, when one identifies an association between a

disease and a factor, relative risks and odds ratios answer the question of how much

that factor increases the likelihood of disease. Another question one would normally

ask is how much of the disease prevalence (or incidence) is explained by that factor.

If the answer was, say, 20%, then we know that we have to search for many other

etiological factors. Conversely, if the answer was 90% then we have an important

indication that almost all cases could be explained by that factor.

The attributable risk was devised precisely to give us that information. It

consists of a measure of the proportion of cases that are accounted for by a factor.

The attributable risk is also called the attributable fraction, and it can be estimated

for the exposed (the attributable fraction among the exposed) and for the total

population (the attributable fraction in the population).
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The attributable fraction in the population tells us how many cases in the general

population are caused by the exposure, assuming of course that there is a causal

relationship between the exposure and the disease. This figure is given by the excess

prevalence of the disease in the general population, compared to the population that

has not been exposed (Figure 5.5, top graph). This gives us a measure of the impact

of an exposure on the health of the population.

The attributable fraction among the exposed tells us how many of the COPD cases

were caused by the exposure. The reference now is the prevalence of COPD among

the non-exposed and this number is compared to the prevalence of COPD among the

exposed. The excess prevalence in the exposed must be due to the causative factor

(Figure 5.5, bottom graph).

In our example, the prevalence of COPD in the population is 208/12 575¼ 1.65%.

The prevalence of COPD in the non-exposed is 72/8052¼ 0.89%. So we have

an estimate of the prevalence in the actual population, where some people are

exposed and some are not, and an estimate of what the prevalence would be if

nobody were exposed. The excess prevalence in the population, 1.65� 0.89¼ 0.76

percentage points, is therefore attributable to the exposure. This corresponds to a

fraction of 45.9% (¼ 0.76/1.65) of the COPD cases in the population. This is the

attributable risk in the population.

The attributable risk among the exposed is found by a similar reasoning.

The prevalence of COPD in the non-exposed is 72/8052¼ 0.89%, and the

prevalence of COPD in the exposed is 136/4523¼ 3.01%. Therefore, the
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Figure 5.5 Attributable fraction in the population and among the exposed.
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exposed have an excess prevalence of 3.01� 0.09¼ 2.12 percentage points.

This corresponds to a fraction of 70.4% (¼ 2.12/3.01) of the exposed, the

attributable risk among the exposed.

These results tell us that, assuming a causal relationship between smoking

and COPD, about 46% of the cases of COPD in the population are caused by

smoking (therefore other factors are responsible for the remaining 54% of

COPD cases) and that about 70% of the COPD cases in ever-smokers are

caused by smoking (therefore 30% of COPD cases have some other cause).

Shortcut formulas give us a simplified way to find attributable risks

from relative risks and odds ratios, which is adequate for mental calculations.

The attributable risk among the exposed may be calculated as one minus the

reciprocal of the risk ratio, incidence ratio, or odds ratio, whichever is the case.

The attributable risk in the population is obtained by multiplying that quantity

by the proportion of exposed among the cases. For example, the relative risk

estimate is 3.4, meaning that COPD is about 3.4 times more likely in ever-

smokers than in never-smokers. The attributable risk among the exposed is one

minus the reciprocal of 3.4, or 70.6%, which means that over two-thirds of the

cases among ever-smokers are accounted for by smoking. The attributable risk

in the population is 70.6% times 65.4% (136/208), which is 46.2%.

5.9 Logits and log odds ratios

We have just seen that we may refer to the likelihood of observing an attribute as a

proportion or as odds. Proportions are known to have a binomial distribution which,

in turn, converges to the normal distribution when sample size increases. Look at

the left graph of Figure 5.6, which shows the frequency distribution of a binary

attribute with probability 0.5 in samples of size 40 expressed as proportions.

We saw before how we could make use of those properties of proportions for

statistical inference. Odds, however, do not posses such properties. Look at the graph

in the middle of Figure 5.6, which shows the frequency distribution of the same

attribute, but now expressed as odds. The distribution is highly skewed to the left and

will never converge to the normal.
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Figure 5.6 Probability distributions of proportions, odds, and logits.
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Now look at the graph on the right of Figure 5.6. It shows the distribution of that

attribute, but now expressed as the logarithm of the odds. Using the logarithm of the

odds, instead of the odds, results in a probability distribution that converges to the

normal distribution, exactly as happens with proportions. Therefore, using the

logarithm of the odds will allow us to make statistical inferences in the same way as

we do with proportions.

The logarithm of the odds is called the logit, and we can work with logits in the

same way as we do with proportions. For example, because the logits are in a linear

scale, we can subtract two logits to find the difference between them. We could not

do this operation with odds because they are not in a linear scale.

Logits are important also because the difference between the logarithms of two

quantities is equal to the logarithm of the ratio of those quantities. Therefore, the

difference between the logits is equal to the logarithm of the odds ratio. This fact

allows us, for example, to find confidence limits for odds ratios. We will see further

on that it also allows us to obtain a straightforward interpretation of the results of a

very important analytical method called logistic regression.
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6

Statistical tests

6.1 The null hypothesis

In the previous chapters, we saw how one can use the sample data to create interval

estimates of population means and proportions. We do this by finding which values

of the population mean or proportion would make the observed sample very

unlikely, and exclude those values with known probability.

We also saw how interval estimates allow us to make decisions regarding the

plausibility of the existence of a difference between two population means or

proportions. We simply verify whether the value 0 is contained in the confidence

interval of the difference between population means or proportions, and we con-

clude on a difference if this value is not contained in that interval.

Therefore, interval estimates allow us to determine the size of the difference that

is likely to exist between two populations and also give us a decision rule to decide

upon the existence of a difference. However, there are occasions when we may be

interested in establishing whether or not there is a difference between populations

but the size of the difference is of no particular interest to us.

The statistical tests that we will discuss in the next sections are nothing more

than an expeditious method to make a decision about the existence of a differ-

ence between population means or proportions. All statistical tests are based on the

same principle, which is to evaluate the plausibility of a particular hypothesis about

the populations taking into account the results observed in the samples. The tests

produce a result expressed in terms of the probability of obtaining a difference

between the samples, such as the one we observed if the hypothesis we made was

true. If that probability is less than a predefined value we reject the hypothesis.

If we want to operationalize this approach and develop a decision rule, we first

need to define the hypothesis that we will evaluate. As a statistical test can only

reject hypotheses and may not confirm them, this means that, in order to decide

upon the existence of a difference, we must reject the hypothesis that the difference
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between population means is zero. This hypothesis is the starting point of a

statistical test and is called the null hypothesis. In statistical notation the null

hypothesis is denoted by H0.

When we reject a hypothesis we are bound to accept an alternative. In a

statistical test there must be only one alternative, so if we reject the null hypothesis

of equality of population means, we will be left with the alternative of accepting

that the population means are different. This is called the alternative hypothesis

and is usually denoted by HA.

Next we need to define a decision rule for the rejection of the null hypothesis.

As a matter of common sense and also by convention, most people will consider

it appropriate to reject the null hypothesis when the probability of obtaining a

difference between sample means as large as the one observed, when the null

hypothesis is true, is less than 5%.

6.2 The z-test

Let us begin with the problem of investigating whether the means of an interval-

scaled attribute are different between two populations. To start, we formulate the

null hypothesis that the means of the attribute are equal in the two populations, and

the alternative hypothesis that the means of the attribute are different in the

two populations. Using statistical notation, what we just said was H0: m1�m2¼ 0

and HA: m1�m2 6¼ 0.

Then, we must obtain two random samples, one from each population. In each

sample, we compute the mean and the standard deviation. The two sample means,

of course, will be different and this will always be so because of sampling variation.

The question is: If the null hypothesis is true, what are the chances of getting a

difference between sample means as large as the one we observed? If the chances are

very small, then we reject the null hypothesis and conclude on a difference between

population means. Conversely, if the chances are reasonable, the result we got through

sampling must be accepted as plausible with the null hypothesis and we fail to reject it.

How can we calculate the likelihood of the observed difference assuming that

the null hypothesis is true? Let us review what can be said about the distribution of

differences between sample means, beginning with the case of large samples.

We know that, according to the central limit theorem, the sample means are

normally distributed. We also know that the differences between the two sample

means, because of the properties of the normal distribution, are also normally

distributed. And we have seen previously that, because of the properties of

variances, the variance of the difference between sample means is equal to the sum

of the variances of the sample means.

Until now this is exactly the same reasoning we made when we were finding

confidence limits for the difference between population means. The difference is that

now we are not estimating population parameters, but simply testing a hypothesis.

So the reasoning is as follows: if the null hypothesis is true (people say ‘under

the null hypothesis’) the mean of the differences between sample means must be

108 BIOSTATISTICS DECODED



zero (Figure 6.1). Accordingly, in 95% of the cases, the sample differences will be

less than 1.96 standard errors away from zero. If the observed difference is not, then

we reject the null hypothesis with 95% confidence. We say that the observed

difference between sample means is within the rejection region of the null

hypothesis.

People tend to become anxious when looking at mathematical formulas, so now

is a good opportunity to show that formulas are really quite harmless. Figure 6.1

shows the formula for the z-test. The z-test is the statistical test we just described

and it is used to test for the differences between two means from large samples. We

reject the null hypothesis when the result of the formula (the z-value) is greater than

1.96. How does that work?

Look again at the formula. You will recognize that the numerator is the

difference between the two sample means. The modulus sign means that we are not

concerned with the direction of the difference, only with its absolute value. You will

also recognize that the denominator is the standard error of the sample differences,

calculated from the sample standard deviation, s. What is the meaning of the value

1.96 for z, as the value above which we reject the null hypothesis? Well, z has that

value when the observed difference between sample means is 1.96 greater than its

standard error, or larger. When that happens we reject the null hypothesis because

–1.96 SE +1.96 SE 0 

95% 

1 The differences between 
means of large samples have 
a normal distribution 

2 Under H0, the mean of 
the d is t r ibut ion of 
differences between 
sample means is zero 

4 If the observed difference in sample means falls into 
one of these regions, the null hypothesis may be 
rejected with 95% confidence 

3 95% of the differences 
between sample means 
will be less than 1.96 
standard errors 

5 The formula of the z-test is the direct 
calculation of the difference between 
sample means expressed as the number 
of standard errors 
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Figure 6.1 Rationale of the z-test for large samples.
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this means that the difference between sample means falls into the rejection region.

The z-test formula, therefore, is nothing more than an expeditious way of deciding

upon the existence of a difference between population means without the need for

calculating confidence limits.

Here is an example. Two random samples of 50 and 60 individuals with

hypercholesterolemia had each been receiving treatment with one of two

different lipid-lowering drugs. On an occasional observation, the mean serum

cholesterol level in the first group was 190mg/dL, with a standard deviation of

38mg/dL. In the second group, the mean cholesterol level was 170mg/dL and

the standard deviation 42mg/dL. The question is whether this difference of

20mg/dL between the two sample means is inconsistent with the null

hypothesis of no difference between mean cholesterol levels in the populations

treated with one or the other drug.

We have no information on the distribution of cholesterol in those

populations, but since the samples are large, we can use the z-test. The standard

error of the sample differences estimated from the data is

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
382

50
þ 422

60

s
¼ 7:63

We know that, if the null hypothesis is true, 95% of all sample differences must

be smaller than 1.96 standard deviations. The difference we got with our

samples was 20, which represents 20/7.63¼ 2.62 standard errors and therefore

the observed difference in sample means is well inside the rejection region. In

other words, our observations are not consistent with the null hypothesis. We

therefore reject that hypothesis, and conclude on a difference between

population means.

An important point to note is that, when we fail to reject the null hypothesis, we do

not accept it either. In other words, if a statistical test does not reject the null hypothesis

of equality of means we cannot conclude that the means are equal or even similar. This

is a common error made by the uninitiated in the interpretation of the results of statistical

tests. Why can we not accept the null hypothesis? Because when we fail to reject the null

hypothesis of m1�m2¼ 0, this means that the value 0 for the difference between

population means is contained within the 95% confidence interval and, therefore, that

either population mean may be higher than the other, or they may be equal. This is why

we cannot conclude anything when we fail to reject the null hypothesis.

On the other hand, when we reject the null hypothesis we are saying that if the

null hypothesis is true the results of our sampling are very unlikely, but by no means

impossible. We are left, then, with a small but definite possibility of rejecting the

null hypothesis when it is actually true. With the decision rule we have adopted, we

know that risk to be less than 5%, but in each situation we can quantify this risk

more precisely. The usual terminology is to call the risk the p-value.
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6.3 The p-value

The p-value can be defined strictly as the probability of obtaining a difference

at least as large as the one that was observed in the samples, if the null hypothesis

was true.

Therefore, the smaller the p-value, the less plausible the null hypothesis and the

greater our belief that a difference between population means truly exists. The p-

value, then, also expresses the strength of the evidence in favor of a true difference

between means. The smaller the p-value, the stronger the evidence.

As this information about the strength of the evidence is of major importance, it

has become current practice to report the exact p-value instead of the simple

notation p < 0.05, which says only that the difference in sample means is within the

rejection region.

We will see here how to find the exact p-value using a statistical table of the

normal distribution. Let us continue with the example in the previous section.

We saw that the z-value was 2.62, meaning that the difference between sample

means is 2.62 standard errors away from the difference between population

means, which, under the null hypothesis, is zero. Therefore, we want to find the

proportion of observations that, in a normal distribution, are more than 2.62

standard errors away from the mean.

In the table of the normal distribution in Figure 6.2 we find that proportion

at the intersection of the row and column that summed together have the value

of the z statistic. The tabulated value is 0.0044. Remember that this table only

Table A1     Areas in the tail of the normal distribution 

0.04 0.05 0.06 0.07 0.08 0.09 

0.0126 0.0122 0.0119 0.0116 0.0113 0.0110 
0.0096 0.0094 0.0091 0.0089 0.0087 0.0084 
0.0073 0.0071 0.0070 0.0068 0.0066 0.0064 

2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 
2.6 0.0047 0.0045 0.0044 0.0043 0.0042 0.0040 0.0039 0.0038 0.0037 0.0036 

z 0.00 0.01 0.02 0.03 

2.2 0.0139 0.0136 0.0132 0.0129 
2.3 0.0107 0.0104 0.0102 0.0099 
2.4 0.0082 0.0080 0.0078 0.0076 

2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019 

Figure 6.2 Finding the exact p-value using a statistical table of the normal

distribution.
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shows the proportion of the values that exceed the z-value, but the rejection

region is defined in both directions. The exact p-value is, therefore, two times

0.0044, or 0.0088.

The interpretation of a notation such as p¼ 0.0088 is that the probability of two

samples having a difference between means, at least as large as the one observed, is

only 0.88% if the null hypothesis is true. Alternatively, we may say that, if the null

hypothesis is true, then for 99.12% of the time the difference between two sample

means will be smaller than the one observed. Consequently, when we conclude

that a difference between population means truly exists, there is a probability of

0.88% that we are making the wrong conclusion. This error is called the alpha

error and it represents the probability of concluding on a difference when actually

there is none because the null hypothesis was indeed true. It represents the rate of

false positives of the statistical test.

6.4 Student’s t-test

When all we have are two small samples, we cannot use the z-test for testing

differences between population means. If the population distribution of the attribute

is unknown, we cannot assume the normal distribution of sample means, and even if

the population distribution is known to be normal, an estimate of the standard error

of the difference between sample means based on the sample standard deviations

does not have the necessary precision.

The situation is therefore identical to what was said on the construction of confi-

dence limits for the difference between two population means with small samples.

Therefore, in the same way as we did for that problem, if we can assume that the two

populations have equal variance, then we can test the null hypothesis of no difference

between population means with a statistical test known as Student’s t-test.
Student’s t-test works exactly as the z-test, except for the adaptations that were

presented in the section on the estimation of differences between population means

with small samples. That is, we must assume that the attribute is normally

distributed and that the population variances are equal. Then, we use the two

variance estimates from the two samples to obtain a common estimate of the

population variance. Remember that this is done by calculating a weighted mean of

the two sample variances using the number of degrees of freedom as weights. With

this common estimate of the variance, we obtain an estimate of the standard error of

the difference between sample means. Finally, we establish the cut-off for rejecting

the null hypothesis in the same way as we did for large samples. Of course, instead

of always using 1.96 standard errors, we must use the number of standard errors

given in the table of the t distribution. We calculate the size of the observed

difference expressed as standard errors and see if it is within the rejection region.

Figure 6.3 illustrates the procedure. Look at the formula for Student’s t-test. The

test statistic t represents the difference between sample means expressed in number
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of standard errors. To verify whether the difference is larger than the cut-off for

rejection of the null hypothesis, we compare that t-value to the value that, in the

table of the t distribution and for the right number of degrees of freedom, is

exceeded by 5% of the observations in either direction. If the t-value is larger than

the number in the table, we reject the null hypothesis with p < 0.05. Otherwise, we

cannot conclude on a difference between means.

As we saw in the previous section, we can also obtain the exact p-value from a

statistical table of the t distribution.

Here is an example that illustrates the entire procedure of the t-test. Assume

that for the comparison of two regimens with lipid-lowering drugs in the

previous example we had two samples of 16 and 12 subjects instead of 50 and

60. The mean and standard deviations of the attribute were the same as in the

previous example, respectively, 190� 38mg/dL and 170� 42mg/dL. The

samples are small but we know that total serum cholesterol has a normal

distribution and its variance is equal in the two populations.

For Student’s t-test, the first step will be to obtain an estimate of the

standard error of the difference between sample means from the observed
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Figure 6.3 The rationale of Student’s t-test in the case of small samples.
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standard deviation of the attribute. We will use the two sample variances to

obtain a combined estimate of the population variance of the attribute

s2 ¼ 382 � ð16� 1Þ þ 422 � ð12� 1Þ
16þ 12� 2

¼ 1579:4

With this estimate of the population variance of the attribute we can now calcu-

late an estimate of the standard error of the difference between sample means

SE� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1579:4

16
þ 1579:4

12

r
¼ 15:18

The asterisk on SE is to remind us that the value refers to the standard error

estimated from the sample, not to the true standard error.

The difference between sample means was 20mg/dL. This corresponds to

20/15.18¼ 1.32 estimated standard errors, the t-value.

Let us first see if this value is within the rejection region. In the table of the

t distribution we see that the rejection boundary for 26 degrees of freedom at

the 5% significance level is 2.056. The difference between samples measured in

standard errors, 1.32, is much less than the rejection limit and we cannot

conclude on a difference between the population means.

We can find the exact p-value using the same table (Figure 6.4). To do so,

we look in the row corresponding to 26 degrees of freedom for the value of the

test statistic, 1.32. The closest value is 1.315 in the column labeled 0.20. This is

the p-value. If the null hypothesis were true, as much as 20% of the sample

differences would differ by at least 20mg/dL, which makes the result of our

sampling very plausible with that hypothesis.

v 0.90 0.50 0.30 0.20 0.10 0.02 0.01 0.0010.05

23 0.127 0.685 1.060 1.319 1.714 2.500 2.807 3.767
24 0.127 0.685 1.059 1.318 1.711 2.492 2.797 3.745

2.485 2.787 3.725

26 0.127 0.684 1.058 1.315 2.479 2.779 3.707
27 0.127 0.684 1.057 1.314 2.473 2.771 3.690

25 0.127 0.684 1.058 1.316 1.708

1.706
1.703

2.069
2.064
2.060

2.056
2.052

28 0.127 0.683 1.056 1.323 1.701
29 0.127 0.683 1.055 1.321 1.699

2.048 2.467 2.736 3.674
2.462 2.756 3.6592.045

26 0.127 0.684 1.058
7

1.319
1.318
1.316

Table A2     Percentage points of the t distribution

tv,P–tv,P

Probability of greater value Degrees of 
freedom 

Figure 6.4 Using the table of the t distribution to find exact p-values.
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Naturally, what was said about the assumption and robustness of the method

in the section on interval estimation of the difference between population means

with small samples also applies to Student’s t-test. In brief, the observations

must be independent, the attribute must have a normal distribution, and the two

population variances must be equal. Student’s t-test is robust and remains valid

providing the distribution of the attribute is not too different from the normal

and the variances are not too different. Student’s t-test is particularly robust if

the sample sizes are equal.

6.5 The binomial test

The binomial test is a statistical test that compares two proportions obtained from

large samples. Therefore, we use this test to investigate associations between binary

variables. Again, the foundation of the test is the same as explained in the previous

sections, since with large samples we can use the binomial approximation to the

normal distribution. However, calculations are made in a slightly different way.

As before, we will test the null hypothesis of no difference between population

proportions. Therefore, under the null hypothesis, differences between sample

proportions are normally distributed with mean 0. The estimation of the standard

error of the differences is unlike the previous tests, however, because here we will

pool the observations from two samples. If the null hypothesis is true, then the

population proportions are the same and, by pooling all the observations, we are

able to get a more accurate estimate of the common proportion and, consequently,

of the common variance. Then, we will use it to obtain a better estimate of the

standard error. Finally, we will use the formula for the z-test that we saw previously.

We want to know how many standard errors the observed difference is away from

zero. Hence, we divide the difference between sample proportions by the standard

error. The resulting z-value is the distance of the observed difference in sample

proportions to zero, expressed as a number of standard errors. If the value of the test

statistic is greater than 1.96, this means that the observed difference is larger than

the cut-off of the rejection region and we may reject the null hypothesis.

The procedure is as follows. We obtain a common estimate of the proportion

in the two populations by adding together all the positive observations, that

is, the observations where the attribute was present, and dividing by the total

sample size.

Remember that the variance of sample proportions is equal to the variance

of the attribute in the population divided by the sample size, that is, p(1�p)/n.

Therefore, the variance of the difference between sample proportions will be

equal to the sum of the two variances of sample proportions, and the standard

error is the square root of that. In short,

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n1
þ pð1� pÞ

n2

s
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Of course, we do not know the value of p, the population proportion of the

attribute. We will use the observed proportion of the attribute (p) instead of

p to obtain an estimate of the true standard error. As the value of p was obtained

from two large samples pooled together, the values n1 and n2 that will divide p

(1� p) are large, and the difference between the square root of p(1�p)/

n1þp(1�p)/n2 and the square root of p(1� p)/n1þ p(1� p)/n2 will be minimal.

We can now use the formula of the z-test:

z ¼ jp1 � p2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n1
þ pð1� pÞ

n2

r

For example, suppose we wish to compare the proportion of a given attribute in

two populations. We have a random sample of 90 observations from population

1, and a sample of 110 observations from population 2. In the first sample, the

attribute was present in 30 patients (33%). In the second sample it was present

in 20 (18%).

The total number of observations is 200, and the number of positive

findings is 50. Therefore, under the null hypothesis the common proportion of

the attribute in the population is p¼ 25%. The estimate of the variance of the

difference between sample proportions is the sum of the variance of each

sample proportion. That is, 0.25� 0.75/90 plus 0.25� 0.75/110, or 0.0038. The

square root of this quantity, 0.062, is the estimate of the standard error of the

difference between sample proportions.

To obtain the z statistic we divide the difference between sample proportions

(0.15) by the standard error (0.062). The result is 2.42, which, being greater than

1.96, allows us to reject the null hypothesis at the 5% error level.

The p-value can be obtained from the table of the normal distribution. At

the intersection of row 2.4 with column 0.02 we read off 0.0078. As the table

we have been using shows one-sided probabilities, the p-value is twice that

value, that is, 0.016.

It is important to note that the procedure for obtaining standard error estimates

is different from the one presented when estimating confidence intervals for

differences between proportions. This means that it is possible to reject the null

hypothesis while the confidence interval includes zero, which is a bit awkward.

Regardless, we should still estimate confidence limits and test the null hypothesis,

as was explained.

6.6 The chi-square test

We can compare two proportions to a different test. This test uses a different

approach to the same question. It is not based on the binomial approximation to the

normal distribution. It has an advantage over the binomial test because it can be
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used to compare several proportions simultaneously. Therefore, we can use the

same test to investigate associations between two binary variables, between a binary

variable and a categorical variable, and between two categorical variables.

The test is based on the comparison of the frequency distribution of an attribute

that was observed in the samples to the frequency distribution we would expect to

get if the null hypothesis were true. If the observed distribution is very different

from the distribution expected under the null hypothesis, then we may reject the null

hypothesis and conclude on a difference between the proportions in the populations.

Let us return to the problem illustrated in the previous section. We had two

samples of 90 and 110 subjects, and we observed a binary attribute in 30 and 20

subjects, respectively. The frequency distributions observed in the two samples are

shown in the upper table of Figure 6.5. In a two-way table like this one, each

frequency shown is called a cell, the row and column totals are called the marginal

totals, and the total number of observations is called the grand total.

We now wish to compare this table to the table we would expect to get if the null

hypothesis were true. Under the null hypothesis, the two samples are from

populations with identical proportion of the attribute. Therefore, we can estimate

the common proportion using all the observations, that is, 50/200 or 25%.

Therefore, under the null hypothesis we would expect that 25% of the

observations in each sample had the attribute and, thus, we would expect to see the

attribute in 25% of the 90 subjects of the first sample, that is, 22.5 subjects, and in

25% of the 110 subjects of the second sample (i.e., 27.5 subjects). We can now

construct the table of the expected frequencies under the null hypothesis, which is

shown in the lower part of Figure 6.5.

Observed frequencies 

Expected frequencies under H0 

with attribute 
without attribute 

Total 

30 
60 

90 

20 
90 

110 

Sample 1 Sample 2 

50 
150 

200 

Total 

with attribute 
without attribute 

Total 

22.5 
67.5 

90 

27.5 
82.5 

110 

Sample 1 Sample 2 

50 
150 

200 

Total 

Figure 6.5 Observed and expected frequencies under H0.
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The fact that the observed frequency distribution is not identical to the

expected distribution under H0 does not in itself contradict the null hypothesis.

Actually, it is quite normal that the two tables are different, because of sample

variation. What would not be normal is a large difference between the two

tables, because it would mean that our observations were not consistent with the

null hypothesis. The key to this problem, therefore, is an assessment of how

large the difference is between the table of the observed frequencies and the

table of expected frequencies under H0. In order to evaluate that, we will need to

be able to quantify the difference.

One measure of the difference between two tables could be the sum of all the

differences between corresponding cells of the tables. This would not work, though,

because in each sample the excess frequency in one of the cells is equal to the

deficit in the other cell. This means that the sum of the differences between cells

will always be zero. Therefore, we need to remove the sign of the differences, and

for this we will apply the usual method of squaring all the differences.

Finally, we need to account for the fact that the importance of a difference is

related to the number of observations (a difference of 4 in 5 is much greater than a

difference of 4 in 50) and thus, in order to be meaningful, we have to express the

difference between cells as a proportion of the expected number of observations.

Returning to our example, the difference between the two tables regarding the

sample from population 1 is 30� 22.5¼ 7.5 squared divided by 22.5, plus

60� 67.5¼� 7.5 squared divided by 67.5. If we calculate the differences between

all the cells and then sum all the results we will get the value 6.06. This result,

which is a measure of the discrepancy between the two frequency tables, is called

chi-square, from the Greek letter x (chi). Of course, the larger the value of chi-

square, the greater the difference between the tables.

Now, how can we determine whether this particular value for chi-square

represents a small or a large discrepancy between the observed frequencies and the

expected frequencies under H0? If we had a notion of the values that the chi-square

takes in a situation where the null hypothesis is true, then we would have something

to compare our result to, and we might realize whether it was exceptionally large

or not.

Fortunately, we can have that notion because the distribution of the values of the

chi-square under the null hypothesis is known, and is called the chi-square

distribution. Figure 6.6 shows the chi-square distribution for the case of tables with
two rows and two columns (2� 2 tables).

We may use the chi-square distribution to find out what the proportion is of

tables with the same marginal totals that under the null hypothesis have a difference

to the expected table smaller than the difference we got. In our example, we would

reach the conclusion that 98.6% of the tables we could get by sampling would have

a chi-square value lower than 6.06. Or, equivalently, that in only 1.4% of the tables

is the value of the chi-square equal to or greater than 6.06. In statistical notation, we

would simply say that p¼ 0.014. Therefore, our result would be an exceptional

event, were the null hypothesis true, and the logical thing to do would be to reject

the null hypothesis at the 1.4% significance level. How did we get this value of
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0.014? By consulting the statistical table of the chi-squared distribution, which we

will discuss later on.

This test is known as the chi-square test, one of the most common tests seen in

the scientific literature. As with other statistical tests, for the rejection of the null

hypothesis we may also use the method of setting the rejection region and

comparing the chi-square value to the rejection limit. In the case of 2� 2 tables, 5%

of the values of the chi-square are greater than 3.84 when the null hypothesis is true

(the rejection region here is one-sided because the chi-square can never have

negative values). The value we got in the example was 6.06, which is clearly within

the rejection region (Figure 6.6). In statistical notation we would then say p < 0.05.

It is easy to realize that the method we used to measure the discrepancy between

the tables of observed and expected frequencies under H0 can be applied to tables

with any number of rows and columns. This is the reason why it was said that this

test could be used whenever we needed to analyze nominal variables, whatever the

number of categories in each one of those variables. The procedure for the test is

always the same; we just need to keep in mind that the distribution of the chi-square

cannot be the same for all types of tables.

Similar to Student’s t distribution, the chi-square distribution is actually a

family of distributions, each one referred to by the number of degrees of freedom

(Figure 6.7). In the chi-square test there is a chi-square distribution for each type of

table, according to the number of rows and columns. We find out which distribution

should be used by multiplying the number of rows minus one by the number of

columns minus one. Thus, a chi-square obtained from a 2� 2 table follows under

H0 the distribution with 1 degree of freedom, from a 3� 3 table the distribution with

4 degrees of freedom, from a 4� 6 table the distribution with 15 degrees of

freedom, and so on.

χ2 

P
ro

ba
bi

lit
y 

0 2 4 6 8
0

.2

.4

.6

.8

1

Figure 6.6 The chi-square distribution under the null hypothesis for a 2� 2 table.

The dark area corresponds to the 5% rejection region.
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The procedure for calculating the chi-square statistic can be written as a

formula. Recall what was done above: for each cell i, we squared the difference

between each observed (Oi) and expected (Ei) value and divided the result by

the expected value (Ei); then we summed all those partial results and obtained

the chi-square value. If we represent a sum by the symbol
P

, what was just

said can be represented by

x2 ¼
X ðOi � EiÞ2

Ei

This is the formula of the chi-square test. Using the example in Figure 6.5,

x2 ¼ ð30� 22:5Þ2
22:5

þ ð6� 67:5Þ
67:5

þ ð20� 27:5Þ2
27:5

þ ð90� 82:5Þ2
82:5

¼ 6:06

We will discuss the notion of degrees of freedom further, in the next section.

Before that, however, let us finish the presentation of the chi-square test by pointing

out the restrictions to this test.

The only situation where the chi-square test is not valid is when the samples

are too small. It is generally accepted that the samples are too small when one or

more cells have zero observations, or when over 25% of the cells have an expected

value less than 5. In these situations an alternative test is Fisher’s exact test, which

has no minimum sample size requirements. If one is testing the association between

0 2 4 6 8 10

0

0.1

0.2

0.3

χ2 

P
ro

ba
bi
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y 

0.4

Figure 6.7 The chi-square distribution with 1 to 10 degrees of freedom. The

distribution becomes progressively more symmetrical with increasing degrees of

freedom.
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categorical variables, perhaps several categories can be collapsed to increase the

number of observations in each cell. Another alternative to the chi-square test for

investigating associations with a binary attribute is logistic regression, which we

will discuss much later in this book.

6.7 Degrees of freedom

We have already mentioned degrees of freedom on several occasions. For

example, we said that the variance was equal to the sum of squares of the

differences to the mean divided by the number of degrees of freedom; that in the

construction of the confidence intervals of a population mean with small

samples we used Student’s t distribution with n� 1 degrees of freedom; that the

t statistic of Student’s t-test followed Student’s t distribution with n1þ n2� 2

degrees of freedom; and now that the chi-square test statistic has a chi-square

distribution with (rows �1)� (columns �1) degrees of freedom.

Let us go back to the example in the previous section and look at the table in the

upper part of Figure 6.8. If we remove the values of all the cells and keep the

marginal totals, then how many cells do we need to know in order to completely

determine the table? The answer is: we only need to know one cell. In fact, as

illustrated in the table, if we know that, say, the value in the cell of sample 1 with

the attribute is 60, this will be sufficient to find the values of all the remaining cells.

For that reason, the parameter we estimated from the table, the chi-square, has

only 1 degree of freedom.

Total 90 110 

Attribute Sample 1 Sample 2 

0 30 20 50 

200 

Total 

1 60 90 150 

Total 90 110 200 

Attribute Sample 1 Sample 2 Total 

A 10 50 

B 70 

C 20 80 

Figure 6.8 Determination of the degrees of freedom of the chi-square statistic.
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Let us now turn to the lower table in Figure 6.8. How many values do we need

now? The answer is two. We need to know two values in order to find the remaining

values, because only one would not be enough. A chi-square estimated from this

table has, thus, 2 degrees of freedom.

When we constructed confidence intervals using Student’s t distribution we

referred to the t distribution with n� 1 degrees of freedom. How many values do we

need to be able to find all the values we used? Exactly n� 1, because if we know the

total sum of all the observations, we will need to know the individual value of n� 1

observations to find the value of the remaining one.

When we compared the means of two populations using small samples, where

we referred Student’s t distribution with n1þ n2� 2 degrees of freedom, we used all

the data from two samples. To find all the values of the first sample we need to know

the values of n1� 1 observations, and for the second sample we need to know the

values of n2� 1 observations. Therefore, we need to know n1þ n2� 2 values.

We can also think of degrees of freedom as the number of values we may

change without altering the result. For example, in the case of the variance, we may

change all the values except one, because the last value must be chosen so that the

total equals the value of the variance. In the case of a 2� 2 table, we are at liberty to

change only one value: after we enter the value 60 we no longer have the liberty to

choose the values of the other cells and keep the same marginal totals.

6.8 The table of the chi-square distribution

The statistical table of the chi-square distribution has a layout similar to the

table of Student’s t distribution. An example is shown in Figure 6.9. The first

column contains the degrees of freedom, and the first row is the probability that

a chi-square value exceeds the tabulated value under H0.

In the example that we have been using to illustrate the chi-square test, we

obtained a chi-square value of 6.06. In the table we find the nearest value in the

row corresponding to 1 degree of freedom, which is 6.63. The heading of the

column containing 6.63 reads 0.01. Therefore, the p-value is about 0.01. The

exact value must be a little higher because 6.06 is less than 6.63. Actually, the

exact p-value obtained with statistical software is 0.014.

Using the chi-square distribution to evaluate the chi-square statistic

introduces a small error, because the latter has a discrete distribution while the

chi-square distribution is continuous. Consequently, the p-value of the chi-

square test is smaller than it should be. A correction called Yates’ continuity

correction compensates for this and consists of subtracting 0.5 from the

difference between each observed value and its expected value. The formula

for the chi-square test with Yates’ continuity correction is, therefore,

x2 ¼
X ðjOi � Eij � 0:5Þ2

Ei
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This correction is considered by many as much too conservative and it is

debatable whether it is necessary. In medical journals the chi-square test is

often presented without the continuity correction.

6.9 Analysis of variance

Analysis of variance, usually referred to as ANOVA or anova, is a statistical test

used when one wants to compare several means. We may think of it as an extension

of Student’s t-test to the case of more than two samples. It may be used instead of

the t-test and under the same conditions, but anova is usually reserved for the

comparison of three or more means.

Currently, anova is not often used as a statistical test for the comparison of

means because in many problems anova can be replaced to some advantage by

multiple regression. However, anova is used in other situations where there is a null

hypothesis to be tested and it certainly is worth knowing the rationale of this

method.

The basic idea underlying anova is very simple. Let us begin by looking at

Figure 6.10. The upper graph shows the distribution of values obtained with a

computer’s random number generator of an attribute with a normal distribution and

variance 1 on three independent random samples of size 30 from three identical

populations A, B, and C with mean 0. The rightmost plot shows the distribution of

all values pooled together into a single group. The lower graph shows the

distribution of the values of the same attribute in three samples, also random and

independent and of size 30, but now from three different populations with means 0,

1 and 2, respectively. Again, the rightmost plot shows all values pooled together.

Table A3  Percentage points of the χχ2 distribution 

Probability of a greater value, P 

v 0.90 0.75 0.50 0.25 0.10 0.025 0.01 0.001 

1 0.02 0.10 0.45 1.32 2.71 
2 0.21 0.58 1.39 2.77 4.61 
3 0.58 1.21 2.37 4.11 6.25 9.35 1134 16.27 
4 1.06 1.92 3.36 5.39 7.78 11.14 13.28 18.47 

12.83 15.09 20.52 

6 2.20 3.45 5.35 7.84 14.45 16.81 22.46 
7 2.83 4.25 6.35 9.04 16.01 18.48 24.32 

5 0.01 0

1 0.02 0.10 0.45 1.32 2.71 

5 1.61 2.67 4.35 6.63 9.24 

10.64 
12.02 

0.05 

7.81 
9.49 

11.07 

12.59 
14.07 

3.84 5.02 6.63 10.83 
7.38 9.21 13.82 5.99 

Degrees of 
freedom 

χ2
v,P 

Figure 6.9 Statistical table of the chi-square distribution.
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Let us compare the pooled values in the two situations. The difference is that in

the first case the variance of the total set of observations is the same as the variance

in the individual samples, while in the second case it is greater.

Therefore, if we estimated the population variance of the attribute using

either the average sample variance or the variance of the pooled values, in the

first situation of equal population means we would obtain similar results.

However, in the second situation, where the population means are different, an

estimate of the population variance using the variance of the pooled values

would be substantially greater than an estimate based on the average of sample

variances.

Consequently, one way of detecting a difference among population means could

be by comparing an estimate of the population variance of the attribute based on the

variance of all observations pooled together (called the total variance) with an

A B C 

Groups 

POOLED 

–2

0

2

3

–2

0

2

4

N(0,1) N(0,1) N(0,1) 

N(0,1) N(1,1) N(2,1) 

Figure 6.10 Observations in three samples from distinct populations (left panels)

of a normal attribute with variance 1 and equal means (top) and unequal means

(bottom) and the result of pooling all observations (right panels).
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estimate based on the average sample variance (called the within-group variance

or residual variance). If the total variance was larger than the within-group

variance, that would signal a difference between population means. Of course, this

reasoning would be valid only under the condition that the population variance of

the attribute is equal in the three groups.

Let us now see how we can implement this reasoning. We have seen that there

are two ways of estimating the population variance of the attribute, the total

variance and the within-group variance.

The total variance can be easily estimated by pooling together all observations,

ignoring their distribution by groups and calculating the sample variance in the

usual way. We will use the notation s2T for this estimate of the population variance of

the attribute.

The within-group variance can be estimated by a weighted average of the

sample variances of each group, using the number of degrees of freedom as weights.

This is similar to what we did for Student’s t-test. Recall that, if it can be assumed

that the population variances are all equal, each sample variance is an independent

estimate of the common population variance, and we can improve the estimate of

the common population variance by calculating a weighted average of the several

estimates of the variance, using the number of degrees of freedom as weights. This

combined estimate of the population variance, as we saw previously, is obtained by

adding all the variances, each one multiplied by its degrees of freedom, and then

dividing the result by the total number of degrees of freedom (i.e., the total number

of observations minus the number of groups). We will use the notation s2W for the

within-group estimate of the variance.

If the null hypothesis that the population means are equal is true, s2T and s2W will

estimate the same quantity; if it is false, s2T will estimate a larger quantity than s2W.

We need a method for comparing the two estimates of the population variance. A

natural way is to divide one by the other, that is, s2T=s
2
W. This quotient is called the

variance ratio and is denoted by F. If the null hypothesis is true, F will be close to

1 (close to but not exactly 1, because of the sampling variation of the variances).

Values greater than 1 will constitute evidence against the null hypothesis: the

greater the value of F, the stronger the evidence.

Actually, the F distribution, the probability distribution of the variance ratios

when the population variances are equal, is known. Therefore, all we need to do is

to use the F distribution to find out which values of F are unlikely when the null

hypothesis is true. If the observed F-value is outside the range of values that are

expected and explained by sampling variation, we have grounds to question the

validity of the null hypothesis.

There is a problem, though. The F distribution can be used only if the

distribution of the attribute is normal and if the two estimates of the variance are

independent. This is not the case with s2T and s2W, which are not independent – the

larger the within-group variance, the larger the total variance.

Still, the idea of comparing two estimates of the population variance is

appealing, and although this will not work for s2T and s2W, perhaps we can think of

another way of estimating the population variance.

STATISTICALTESTS 125



Let us look again at the top graph in Figure 6.10. This graph shows the situation

where the null hypothesis of equal population means is true. We will see how we

can obtain an estimate of the population variance of the attribute, other than the total

variance and the within-group variance.

If the null hypothesis is true, the means of the attribute in populations A, B, and

C are all equal. The sample means, however, will not be equal due to sampling

variation. We know that the variance of the means is equal to the population

variance of the attribute divided by the sample size, that is, to s2/n. Therefore, if we

multiply the variance of sample means by the sample size n we will get the value of

the population variance of the attribute s2.

Of course, we do not know the true value of the variance of sample means, but

we can estimate it from our data. We simply compute the variance of the values of

the three sample means in the usual way we use to compute variances. For example,

suppose the three sample means are 0.87, 0.95, and 1.15. The average of these three

values is 0.99. Then, the variance of the sample means is

varðMÞ ¼ ð0:87� 0:99Þ2 þ ð0:95� 0:99Þ2 þ ð1:15� 0:99Þ2
3� 1

¼ 0:0208

This is our estimate of the variance of sample means, s2/n. Then we multiply the

result by the sample size, 30 in this example, and the result is an estimate of the

population variance of the attribute, s2. We call this estimate the between-groups
variance and denote it by s2B.

Clearly, this estimate of the population variance is independent of the within-

group variance – sample means vary randomly, not by virtue of the degree of spread

of the observed values. If we return now to the example in Figure 6.10, we can see

that when H0 is true the two estimates of variance s2B and s2W will be approximately

equal. However, if the population means are different, s2W will not change while s2B
will increase.

As these two estimates of variance are independent, we can now apply the F-

test. We calculate the F-value by s2B=s
2
W. The F distribution will tell us the range of

values taken by the F statistic in 95% of the cases, when two independent estimates

of the variance are estimating the same common variance. This is the case when H0

is true, but not when it is false. If the F-value that we obtain is outside that range, we

have evidence that the two variance estimates s2B and s2W do not estimate the same

quantity and we will reject the null hypothesis of equality of population means.

In the example all samples had the same number of observations. However,

in practice the samples often have different sizes and, thus, calculation of the

between-groups variance is more complicated because there is no unique

sample size n for multiplying the observed variance of sample means in order

to obtain an estimate of s2.

There is another way of calculating the between-groups variance. Consider first

the total variance. We know that the total variance is the sum of the squared

differences between each value and the mean of the pooled observations, divided by

the number of degrees of freedom. We will call this mean the grand mean. Now, if

the observations are aggregated in different groups, as is the case here, the
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difference of each observation to the grand mean is equal to the difference of that

observation to its group mean plus the difference of its group mean to the grand

mean. For example, if the grand mean is 20 and an observation is 8 and its group

mean is 13, the deviation of the observation to the grand mean is 12. This is the

same value as the sum of the deviation of the observation to its group mean

(13� 8¼ 5) and the deviation of its group mean to the grand mean (20� 13¼ 7).

It so happens that the sum of squares of deviations of individual observations to

the grand mean is also equal to the sum of squares of deviations from each

observation to its group mean plus the sum of squares of the deviation of its group

mean to the grand mean. In other words, the total sum of squares can be partitioned

into two components, the within-group sum of squares and the between-groups sum

of squares.

With this knowledge, we can compute the between-groups variance when

samples are of different sizes (as well as when they are the same size) simply by

subtracting the within-group sum of squares from the total sum of squares, which

will give us the between-groups sum of squares, and then dividing this sum of

squares by the number of degrees of freedom. As this estimate of the population

variance of the attribute is obtained from the means of the groups, the number of

degrees of freedom must be, of course, the number of groups minus one.

Let us look at an example. Figure 6.11 shows the results observed on samples

from three populations. Sample A is from patients with a hereditary

cardiomyopathy, sample B is from asymptomatic mutation carriers, and sample

C is from healthy controls. The attribute that was measured was the left

ventricular ejection fraction (LVEF). We want to verify whether the LVEF is

associated with the disease status and, for that purpose, we will use anova to

test whether the three samples are from populations with equal means.

We will need to compute the total sum of squares (SSqT) in order to

calculate the between-groups sum of squares (SSqB). We obtain the SSqT from

Total 93 43.26 6.92 

Group n mean SD 

A 50 45.01 6.65 

B 24 41.06 8.00 

C 19 41.41 4.91 

Figure 6.11 Left ventricular ejection fraction in three groups classified

according to mutation status in hereditary cardiomyopathy. SD: Standard

Deviation.
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the total sample variance by multiplication with its degrees of freedom (n� 1):

Total variance ¼ 6:922 ¼ 47:89
SSqT ¼ 47:89� 92 ¼ 4405:88

To calculate the between-groups sum of squares we subtract from the total sum

of squares the within-group sum of squares. We can compute the latter from the

three variances

SSqW ¼ 6:652 � 49þ 8:002 � 23þ 4:912 � 18 ¼ 4072:85

Now we can calculate the between-groups sum of squares by SSqT� SSqW:

SSqB ¼ 4405:88� 4072:85 ¼ 333:03

We obtain the two independent estimates of the population variance of LVEF,

s2W and s2B, by dividing each sum of squares by its number of degrees of

freedom. The number of degrees of freedom for s2W is n1� 1þ n2� 1þ n3� 1

and for s2B it is the number of groups minus 1:

s2W ¼ 4072:85=90 ¼ 45:25
s2B ¼ 333:03=2 ¼ 166:52

These estimates are called mean squares and they represent the two independent

estimates of the population variance of the attribute. If H0 is true we expect

the two estimates to yield similar values. It is apparent from the results that the

variance estimate computed from the sample means is greater than the estimate

computed from the average of sample variances. The variance ratio is

F ¼ 166:52=45:25 ¼ 3:68

Like the t and the chi-square distributions, the F distribution is also a

family of distributions, but here we have two kinds of degrees of freedom.

Which one will we use? We will use both. Actually, there is one F distribution

for each combination of degrees of freedom of the between-groups and within-

group estimates of variance.

The limit of the rejection region of the F-test can be found in a statistical table

of the F distribution by looking for the tabulated value corresponding to the degrees

of freedom of the numerator (the degrees of freedom of s2B) and of the denominator

(the degrees of freedom of s2W) of the variance ratio. For example, the table of the F

distribution tells us that for 2 and 90 degrees of freedom the limit of the 5%

rejection region is 3.10. If the F-value we obtained was greater than that value we

would reject the null hypothesis.

In the F distribution, the rejection region is one-sided, that is, defined only in the

direction of an F-value greater than 1, because those are the only F-values that we

are interested in. Figure 6.12 shows the F distribution with 2 and 90 degrees of

freedom with the one-sided 5% rejection region.

Thus, anova allows us to test if several sample means are all from populations

with identical distributions of the attribute. As the classification into groups can be
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regarded as the values of a nominal variable, anova is actually a test of association

between an interval and a nominal variable, in the same way that Student’s t-test

tests the association between an interval and a binary variable.

On several occasions throughout the above discussion of the anova test we

referred to the assumptions we had to make about the data. That is, we mentioned

that the attribute must have a normal distribution in each group and that the variance

of the attribute must be the same in all groups. We call this condition of equality of

variances homoscedasticity, the opposite being heteroscedasticity. Similar to

Student’s t-test, which has some affinities, anova is rather more sensitive to

deviations from the condition of homoscedasticity than from the condition of a

normal distribution of the attribute.

In the next section we will see how to use a statistical table of the F distribution.

There is one last issue, though. This test allows us to conclude that the means are

not equal across groups, but does not inform us which groups have different means.

Intuitively we might think it would be appropriate to test pairwise comparisons of

all groups, but we will see how this would lead to the problem of multiple

comparisons.

6.10 Statistical tables of the F distribution

The F distribution is tabulated, and one example is shown in Figure 6.13.

Tables of the F distribution often are, as in the example, three-way tables. One

entry is for the degrees of freedom for the numerator, one is for the degrees of

freedom for the denominator, and the third entry is for the p-values. Tabulated

0 
0.

2 
0.

4 
0.

6 
0.

8 
1 

P
ro

ba
bi

lit
y

0 1 2 3 4 5 

F

Figure 6.12 The F distribution with 2 and 90 degrees of freedom. The dark area

under the curve corresponds to the 5% rejection region.
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values are the values exceeded with the probability indicated in the column P.

As usual, we can use this table to find the limits of the rejection region or to

find the approximate p-value of a given F-value.

To see how to use the table, let us resume the previous example. We had

obtained an F-value of 3.68 with 2 and 90 degrees of freedom. Therefore, we

search the table for the intersection of 2 degrees of freedom for the numerator

and 90 for the denominator. Such a combination is not tabulated, the nearest

entries being 60 and 120 degrees of freedom for the denominator, so the 5%

rejection limit for 90 degrees of freedom is somewhere between 3.07 and 3.15.

Therefore, the F-value of 3.68 exceeds any of those values and, thus, is within

the rejection region. We may conclude on a difference in population means.

Let us look at whether we can reject the null hypothesis at the 2.5% level.

The 2.5% rejection limit is somewhere between 3.80 and 3.93, so we cannot

reject the null hypothesis at the 2.5% significance level. The p-value must be

between 0.05 and 0.025. Actually, its exact value obtained with statistical

software is 0.029.

Table A4     Percentage points of the F distribution

df for numerator, ν1 

P 1 2 3 5 6 7 

60 0.05 4.00 3.15 2.76 
0.025 5.29 3.93 3.34 
0.01 7.08 4.98 4.13 3.34 3.12 2.95 
0.005 8.49 5.79 4.73 3.76 3.49 3.29 

2.29 2.17 2.09 
0.025 5.15 3.80 2.67 2.52 2.39 
0.01 6.85 4.79 3.17 2.96 2.79 

120 0.05 3.92 3.07 2.68 
3.23 
3.95 

4 

3.65 
4.14 

2.45 
2.89 
3.48 

2.53 2.37 2.25 2.17 
2.79 2.63 2.51 3.01 

df for 
denomi- 
nator, ν2 

FP,ν1,ν2

0.005 8.18 5.54 3.55 3.28 3.09 4.50 3.92 

Figure 6.13 A section of a statistical table of the F distribution.
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7

Issues with statistical tests

7.1 One-sided tests

In the previous chapter we mentioned one-sided rejection regions when we dis-

cussed the chi-square test and the F-test. In both cases the rejection region was

defined only in the direction of positive values, but for different reasons. In the

chi-square test, the reason was because it is just not possible for the chi-square

statistic to have negative values; in the second case, it was because we were only

interested in F values greater than unity, since then there would be evidence of

a difference between population means.

All statistical tests may have one-sided rejection regions. One-sided statistical

tests are exactly the same as two-sided tests, except for the way the null hypothesis

is formulated. Until now we have always assumed that a test had two-sided

rejection regions, and every time we rejected the null hypothesis (H0) we had to

accept the alternative hypothesis (HA) of a difference between population means. In

statistical notation, if we denote the population means by m1 and m2, we would

write H0: m1¼m2; HA: m1 6¼m2.

However, we can define H0 and HA in other ways, as long as the two hypotheses

cover all possibilities. For example, we can formulate H0: m1�m2 and, in that case,

HA: m1 >m2. We can also formulate H0: m1�m2 and HA: m1 <m2. In words, this

means for the first case that if we rejected H0 we would conclude that m1 is greater

than m2; and for the second case that m1 is less than m2.

We can also test the null hypothesis that the population mean is equal to a given

value x. This would be a two-sided test, and the null and alternative hypotheses

would be H0: m¼ x and HA: m 6¼ x. If we want to demonstrate that the population

mean is greater, or less, than a given value x then the tests are one-sided and the

hypotheses would be, respectively, H0: m� x; HA: m> x and H0: m� x; HA: m < x.

Differences between population means can also be tested against a given value.

In this case, it is rare to test the two-sided hypothesis, but it is very common to test

Biostatistics Decoded, First Edition. A. Gouveia Oliveira.
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the one-sided hypothesis. For example, we may be interested in showing that the

mean difference in outcomes between a new drug and the standard treatment is

greater than a given value x, and we declare the new drug to be ineffective if the

difference in outcome is less than x or the new drug is worse than the standard

treatment. In this situation, it makes sense to formulate a one-sided hypothesis in

the form H0: m1�m2� x and HA: m1�m2. > x.

Therefore, a two-sided statistical test is a test where the alternative hypothesis

is that a difference exists in either direction. When the alternative hypothesis is

that a difference exists in one of the directions, then it is called a one-sided

statistical test.
As we said earlier, the procedure for a one-sided test is exactly the same as for a

two-sided test, but with a single difference: since we are looking for a difference

in only one direction, the rejection region is not defined in both directions; it is

defined only in the direction where the difference interests us. Figure 7.1 shows

the difference between the rejection regions of a two-sided test and a one-sided test

for the comparison of two means, for the same significance level of 5%.

As the figure shows, in the case of a one-sided test the rejection region is defined

as the values of the differences between sample means that exceed 1.65 standard

errors, the value above which are 5% of the differences between two sample means.

If the difference is less than �1.65 the null hypothesis should not be rejected.

One-sided tests are used in two distinct situations and it is important to separate

them because of different implications in the definition of the rejection region. This

distinction is important because failure to set the rejection region appropriately may

lead to incorrect conclusions.

In situations where there is no way that the difference could be in one of the

directions, a one-sided test would be appropriate. In these cases, the rejection region

should be set at 5% on a single direction, as in the lower graph of Figure 7.1. This is

a very strong assumption and it is seldom possible to be absolutely sure that it is

true. For this reason this type of one-sided hypothesis is rarely found.

0 1.64 

Standard errors 

1.960
Standard errors

One-sided
HA: μ1>μ2 

HA: μ1≠μ2 

Two-sided

Figure 7.1 Difference between two-sided and one-sided tests.
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More often one will want to demonstrate that a population parameter (the mean

or the difference between two means) is greater than a given value x, and it is

understood that the population parameter may be less than x but it happens that we

are interested in departures from x only in the direction of a greater value. In this

case the rejection region should be set at 2.5% in the direction that interests us,

therefore keeping the alpha error at the 5% level. The same applies if one wants to

show that a population parameter is less than a given value.

The following example illustrates how we can test a one-sided hypothesis. Let

us again use the example of the observational study where we want to compare

occasional measurements of blood lipids between two groups of subjects that

had been receiving either drug A or drug B. Suppose we wanted to show that

subjects treated with drug B have HDL cholesterol levels that are more than,

say, 5mg/dL higher than those treated with drug A. Assume that we had a

sample of 120 subjects treated with drug A and 140 treated with drug B, and

that the mean serum HDL cholesterol level in those in group A was 52mg/dL

with standard deviation 14mg/dL, and in group B the mean was 61mg/dL with

standard deviation 16mg/dL. We will use Student’s t-test for this analysis.

We want to be able to reject the null hypothesis that the difference between

the population means of group B and group A is 5mg/dL. It is quite possible that

drug A achieves higher HDL cholesterol levels than drug B, but this is of no

interest to us – we only wish to check whether drug B achieves an increase of

5mg/dL or more than drug A. So the null hypothesis will be formulated one-

sided, but because it is possible that a difference in HDL cholesterol exists in

either direction, we will set the one-sided rejection region at a/2, that is, at 2.5%.

The null and alternative hypotheses are H0: mB�mA� 5mg/dL and HA:

mB�mA > 5mg/dL. Recall the reasoning we made when we discussed the t-test

for evaluating the null hypothesis of equality of population means. Then, the

hypothesis was that the distribution of the differences between sample means

had zero mean, and departure of the observed difference between the two

sample means from zero constituted evidence against the null hypothesis. Now

the hypothesis is that the distribution of differences between sample means has

mean 5mg/dL and departure of the observed difference from that value in the

direction of a higher value will constitute evidence against the null hypothesis

of a lesser difference.

In order to test this one-sided hypothesis we will need to write the formula

for the t-test in a slightly different way. Remember that the formula for the

comparison of two means is

ta;n1þn2�2 ¼ jm1 � m2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

n1
þ s2

n2

s

where s2 is a weighted average of the two sample variances and t is the dif-

ference of the absolute observed difference between sample means expressed

as the number of estimated standard errors away from zero. So we could write
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this formula, without changing its meaning, as

ta;n1þn2�2 ¼ jm1 � m2j � 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

n1
þ s2

n2

s

and in the case of our example we could write it as

ta;n1þn2�2 ¼ mB � mA � 5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

n1
þ s2

n2

s

where now the t-value represents the difference between sample means to

5mg/dL in the direction of greater values, expressed as the number of

estimated standard errors.

Let us carry out the calculations using the data in our example. We start by

calculating the weighted average of the two sample variances

s2 ¼ 142 � 119þ 162 � 139

119þ 139
¼ 228:33

Then we apply the formula of Student’s t-test

t0:025;258 ¼ 61� 52� 5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
228:33

120
þ 228:33

140

r ¼ 4

1:88
¼ 2:13

The table of Student’s t distribution tells us that, for 258 degrees of freedom,

2.5% of the observations are more than 1.97 estimated standard errors away

from one side of the mean.

The t-value 2.13 exceeds that value and is therefore within the rejection

region. Accordingly, we reject the null hypothesis that the mean HDL

cholesterol in subjects treated with drug B is 5mg/dL or less than in subjects

treated with drug A, and we accept the alternative hypothesis that the mean

HDL cholesterol is more than 5mg/dL higher with drug B than with drug A.

We can find the exact p-value from the table of the t distribution, which is

0.034. Therefore, we conclude at the 3.4% significance level that in subjects

treated with drug B the mean HDL cholesterol is more than 5mg/dL higher

than in subjects treated with drug A. Figure 7.2 shows the distribution of the

differences between sample means under the null hypothesis. H0 is rejected if

the observed difference is greater than 8.7mg/dL (¼ 1.97� 1.88mg/dL).

We can reach the same conclusion by looking at the 95% confidence

interval of the difference between population means. The interval is 5.3 to

12.7mg/dL and, as the lower limit is greater than 5mg/dL, we conclude with

95% confidence that mean HDL cholesterol is at least 5.3mg/dL higher with
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drug B than with drug A. The t-test gives us additional information on the

strength of the evidence as reflected in the p-value.

7.2 Power of a statistical test

As in any other imperfect method of decision making, with statistical tests there are

also cases of wrong conclusions. The methodology of statistical tests is based on the

definition of a decision rule that assures, on the condition that any assumptions

made are valid, that one will wrongly conclude for a difference in only 5% of the

times that the null hypothesis is actually true. This error is called, in statistical

terminology, the type I error or alpha error.
In other words, the method assures a rate of false positives for the test of only

5%. In 95% of the cases when the null hypothesis is true the test will not reject the

hypothesis. The rate of true negatives of a statistical test when the null hypothesis is

true, the specificity of the test, is thus set at 95%.

Just as there are false positives, there are also false negatives, that is, situations

where the null hypothesis is not rejected although it is actually false. This error is

called the type II error or beta error. Unlike the alpha error, which is set by us, the

beta error depends on several factors. Figure 7.3 illustrates the alpha and beta errors

corresponding to the dark shaded areas. The proportion of well-classified cases is

represented by the light shaded areas.

The chart at the bottom of the figure illustrates what happens when the null

hypothesis is false. The distribution of the differences of the sample means is

centered on the true value of the difference between the population means. In

all cases in which the differences between sample means are less than 1.96

5 8.7 

 
 

H0: μB−μA ≤5 mg/dL 

HA: μB−μA >5 mg/dL 

Rejection
region

MB−MA (mg/dL)

Figure 7.2 Distribution of differences between sample means under a one-

sided null hypothesis.
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standard errors away from zero the null hypothesis will not be rejected,

although it is false. In all other cases, the null hypothesis will be rejected and

the proportion of these cases corresponds to the rate of true positives, better

known as test sensitivity and, in the context of statistical tests, called the

power of the test.

If we wish to increase the power of a test we will have to reduce the dark shaded

area. In theory, this could be done by having the distribution further away from zero

(i.e., increasing the difference between the population means) or by decreasing the

variance of the distribution (i.e., decreasing the standard error). Since we cannot act

on the difference between the means, or on the variance of the attribute, we are left

with the possibility of increasing the sample size, which will decrease the standard

error and, consequently, increase the power of the test

7.3 Sample size estimation

When planning a study that aims to make comparisons between the means of two

populations, it is important to plan the size that the samples must have in order to be

able to detect a difference, if a difference truly exists. We are now able to

understand that for this calculation we first need to define the magnitude of the

difference between population means that we do not want to miss. Then we need to

define how much power we want our study to have. In general, a power between 70

and 90% is desired. Then we need to calculate the value that the standard error must

have for the test to have the desired power, if that difference really exists. Knowing

the approximate value of the variance of the attribute in the population, we can then

determine the sample size. We may know the approximate value of the variance

True negative

False positive
(alpha error)

0 2 SE

Under H0 

Under HA 

True positive (power)

False negative
(beta error)

0 2 SE

Figure 7.3 The alpha and beta errors of a statistical test.
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using the data from published studies or, in their absence, through a small number

of observations on a population identical to the one that will be studied.

We will now see how we can calculate the sample size required for detecting a

specified difference d between population means, if such difference truly exists.

The upper graph in Figure 7.4 displays how the differences between sample

means are distributed if the null hypothesis is true, with the rejection regions

shown as dark- shaded areas. We will reject the null hypothesis if the observed

difference in sample means is greater than R. What is the value of R? If we set

the alpha error at 5%, the value will be 1.96 times the standard error; if we set it

at 1%, the value will be 2.57 times the standard error. In general we may write

that R is at za/2� SE, where za/2 is the value of the standardized normal deviate

exceeded with probability a in both directions.

When we want to calculate the sample size we also need to specify the alter-

native hypothesis and we assume that the true value of the difference between

population means is d. The lower graph of Figure 7.4 displays how the differences

between sample means are distributed if that hypothesis is true. The alternative

hypothesis will be accepted if the observed difference between sample means is

greater than R and we want that to happen with specified probability 1� b, repre-

sented by the light-shaded area. So what is the value that R must have so that the

light-shaded area has the specified probability? It will be d� zb� SE, where zb is

the value of a standardized normal deviate exceeded with one-sided probability b.

0 R 

Distribution of m1 m2 under H0 

0 R δ 
Distribution of m1 m2 under HA 

Figure 7.4 Distribution of the differences between sample means under the

null hypothesis and an alternative hypothesis with specified difference d. The

null hypothesis is rejected when the observed difference is greater than R.
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Therefore, the value R is such that R¼ za/2� SE and R¼ d� zb� SE and

we can write

za=2 � SE ¼ d� zb � SE

or

d ¼ ðza=2 þ zbÞ � SE

If the two samples are to be of the same size, then

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

n
þ s2

n

r
¼

ffiffiffiffiffiffiffiffi
2s2

n

r
¼ s

ffiffiffiffiffiffiffiffi
2=n

p

Solving the equation for n we get

n ¼ 2ðza=2 þ zbÞ2s2

d2

Let us now calculate the sample size using the previous example. We

estimate that in subjects treated with drug A an occasional reading of HDL

cholesterol has standard deviation 14mg/dL, and we want to calculate the

sample size required to show with a two-sided significance level of 5% (or

perhaps preferably a one-sided significance level of 2.5%) and 80% power

that subjects treated with drug B have a mean HDL cholesterol at least

5mg/dL higher.

In the statistical table of the normal distribution we look for the z-value

exceeded in one direction with probability 2.5%, which is 1.96. This is the

value of za/2. Then we look for the z-value exceed in one direction with

probability 20% (¼ 100� 80%), which is 0.84. This is the value of zb. The

specified difference d is 5mg/dL. Therefore, the calculation is

n ¼ 2� ð1:96þ 0:84Þ2 � 142

52
¼ 122:9

We will need 123 subjects per group.

For proportions the reasoning is the same but an adaptation is necessary

because the standard error of the difference between sample proportions is

different for the null and alternative hypotheses. Under H0 the proportion with

the attribute is identical in both populations and equal to p. The standard error

of the difference of sample proportions with samples of equal size n is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1� pÞ

n

r

Under HA the proportion with the attribute in the two populations is p1 and p2,

and the standard error of the difference of sample proportions is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1� p1Þ þ p2ð1� p2Þ

n

r
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Therefore, the sample size calculation becomes

n ¼ za
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1� pÞp þ zb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1� p1Þ þ p2ð1� p2Þ

p� �2
d2

For example, suppose the proportion of subjects treated with drug A with

HDL cholesterol above 60mg/dL is 30% and we want to know how many

subjects we would need in a study to show, with 70% power at the two-sided

5% significance level, that with drug B the proportion will be increased to 45%.

Using the above formula with p1¼ 0.30, p2¼ 0.45, p¼ 0.375, d¼ 0.15,

za/2¼ 1.96, and zb¼ 0.52 we estimate that 128 subjects per group will be

necessary:

n ¼ 1:96� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:2344

p þ 0:52� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:21þ 0:2475

p� �2
0:152

¼ 127:5

There are occasions when we may consider forming samples of unequal size.

For example, we may find it difficult to enroll controls in a case–control study or

exposed in a cohort study. In such cases we may increase sample size by recruiting

more subjects from the population that is more accessible, for example, using an

unbalanced rate of 2 : 1 or 3 : 1.

It must be noted, however, that for a given total sample size, maximum power is

obtained with equally sized groups and that power decreases almost linearly with

increasing unbalanced rates. Conversely, for a given power, minimum total sample

size is achieved with equally sized groups and total sample size increases almost

linearly with increasing unbalanced rates. In addition, some statistical tests such as

Student’s t-test are most robust when sample sizes are equal.

Resorting to unbalanced samples in order to afford more power to a study may

be cost effective up to a certain degree of unbalance, but after a certain extent the

gains in power are not significant. Figure 7.5 shows the increase in power obtained

by increasing the size of one sample without changing the size of the other. It is

apparent that little is gained by an unbalance greater than 3 : 1.

7.4 Multiple comparisons

We have seen in the section on anova that this test can detect a difference between

several population means but does not inform about which groups are different

from the others. At first sight we might clarify the question by comparing all

groups in pairs with t-tests or with anova. However, that procedure would quickly

lead us to the wrong conclusions. This is a problem known as multiple

comparisons.

Why is this procedure inappropriate? Quite simply, because we would be

wrongly testing the null hypothesis.
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We saw in the discussion on the t-test that for the comparison of two population

means we formulate the null hypothesis of equality of means and take a large

difference between two samples taken at random for those populations as evidence

against the null hypothesis. This is not what we do when we make a series of

pairwise comparisons between a number of sample means. What we actually do is

first to select the largest difference between any two means and then conclude that

such a large difference is unlikely if the null hypothesis is true. The more pairwise

comparisons we do, the more likely we are to obtain an uncommonly large

difference between any two means and the more likely we are to conclude on a

significant difference between population means when there is none.

A computer simulation helps to understand the consequences of multiple

comparisons. The results of the simulation are shown in Figure 7.6. The means of

two series of 10 000 computer-generated random samples of a standard normal

variable (a random variable with a normal distribution with mean 0 and variance 1)

were calculated. The curve on the left shows the distribution of the differences

between two sample means, one from each series. As H0 is true, the mean of the

distribution is zero.

Then four series of 10 000 random samples of the same standard normal

variable were generated. All the pairwise differences of the six possible combina-

tions were obtained and the largest difference was retained. The curve on the right

shows the distribution of the largest difference between four samples taken two by

two and, as the four series are from identical variables, this curve corresponds to the

actual null hypothesis.

The limits of the rejection regions are set in the usual manner, as if we had

observed only one difference between two samples, disregarding the fact that we had
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Figure 7.5 Effect of increasing sample size ratios on the statistical power to

detect at the 5% significance level a difference of 5 on an attribute with standard

deviation 14 and a sample size n2 of 120.
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indeed selected the largest difference out of six comparisons. However, as can be

seen in the figure, in as many as 22.4% of the times the largest difference between

any two of four samples will be greater than the rejection limit. Still disregarding the

fact that six comparisons were made, if a difference happened to be greater than the

rejection limit one would conclude on a difference between the two population

means at the 5% error level. However, the error level was actually 22.4%.

This is the reason why, after an anova concluding on a difference between

population means, we cannot just compare all possible pairs of means with t-tests.

In fact, this applies to all situations where we want to make multiple tests. Several

statistical tests are adequate for these situations because they take into account

the number of planned comparisons. Some of the more commonly used ones are

Tukey’s test and Duncan’s test. An alternative that is more expeditious is the

Bonferroni correction. This method compensates the likelihood of a false posi-

tive test in multiple comparisons simply by dividing the desired significance level

by the number of comparisons made. In the above example, in which six com-

parisons were made, a significance level of 0.0083 should be adopted to ensure

that the null hypothesis would be rejected with an error of 5%. In the statistical

table of the normal distribution, we can see that this means the rejection threshold

will be defined by 2.64 standard errors on each side of the mean instead of 1.96.

Alternatively, one can multiply the p-value obtained at each comparison by the

number of planned comparisons, thereby obtaining the actual value of p. The
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Figure 7.6 Comparison of the distribution of the differences between means

under the null hypothesis. On the left is the probability distribution of an observed

difference between two sample means. On the right is the probability distribution

of the largest difference between 2 of 4 means.
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Bonferroni correction has the drawback of being too conservative. The correction

of the p-value is somewhat excessive and, as a result, the false negative rate

increases, that is, the probability of failing to reject the null hypothesis when it

is false.

7.5 Scale transformation

We have seen that the normal distribution of an attribute and the equality of

variances between groups are frequent conditions of the application of statistical

tests. We have also seen that in some circumstances, such as in Student’s t-test, we

can work around the problem by increasing the sample size and by having equal

sample sizes. However, this measure is not sufficient in tests such as anova, which

are very sensitive to deviations of the condition of homoscedasticity.

A solution that can be often used is the transformation of the measurement scale

of the attribute. Many biological variables that are assessed in the laboratory use

dilution methods to determine their concentration, which is a logarithmic process, but

the results are reported on a linear scale. For example, the presence of the product is

screened in successive dilutions 1 : 10, 1 : 100, 1 : 1000 and results are reported as

1, 2, 3. For this reason, many biological attributes have a logarithmic distribution,

which is characterized by a pronounced asymmetry of their frequency distribution

with a sharp deviation toward lower values. If we apply a logarithmic transforma-

tion to their values, we will obtain a new variable with a normal distribution.

The logarithmic transformation is surely the transformation toward normality

more often used in clinical research. Other transformations occasionally use the

square root and reciprocal transformations. Figure 7.7 shows the appearance of

some distributions that can be transformed into the normal distribution using the

indicated operation.

square root 

logarithm reciprocal 

Normal 

Figure 7.7 Commonly used transformations to the normal distribution.
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It is quite common for several transformations to be tested before a good

approximation to the normal distribution is achieved. It is also possible to use

two or more transformations on the same variable, for example, the logarithm of

the reciprocal. Still, there are occasions when it is not possible to find a trans-

formation that gives the attribute the required properties for analysis by one of the

statistical tests that we have discussed. For these situations there is an approach to

the theory of statistical tests that is different from the statistics of the normal

distribution that we have been discussing so far in this book. It is known as non-

parametric statistics.

7.6 Non-parametric tests

Non-parametric statistics approach hypothesis testing from a different perspective.

Generally, non-parametric tests are based on the determination of the probability,

under the null hypothesis, of the particular set of observed values. As such, no

assumptions about the probability distribution of variables are made and therefore

there are no distribution parameters to estimate. Hence the designation of non-

parametric.

Let us consider an example to illustrate the basis of non-parametric

methodology. Suppose we want to determine whether there are differences in body

weight between men and women. For this, we get two random samples from each

population and measure the weight of each subject. Now if we rank all weights in

ascending order we would expect, if the null hypothesis of no difference between

the average weight is true, that men and women would be completely mixed, almost

in alternate order. However, if men were on average heavier than women, then we

would expect to find more women than men in the lower values of weight and,

conversely, more men than women in higher values. This ranking of the elements of

the two samples, in turn, would not be likely if the null hypothesis were true. The

ranking of the values of the two groups can therefore inform us about the

plausibility of the null hypothesis.

Let us create a statistic, call it U, which captures the rank order of the weights.

One way to do this is by counting, for each man in turn, how many women have

a lower weight and then adding all these values.

We thus obtain a single value. If males are lighter, there will be few women

weighing less than every man and U will have a low value. If heavier, for every

man there are several women who weigh less and U will have a high value.

Intermediate values ofUmean that theweights are distributed regardless of gender.

The decision to reject the null hypothesis will depend, therefore, on the

value of U. Under the null hypothesis, intermediate values of U should be the

most frequent, while very low or very high values of U would be unlikely. We

therefore need to determine the probability of occurrence of each value of U

under the null hypothesis.
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To do this we need to identify all possible orderings of men and women

under the null hypothesis and then calculate the value of U for each one.

Figure 7.8 exemplifies the procedure for a case of two samples of three

individuals (males in dark circles and females in light circles), ranked in

ascending order of weight from left to right. Suppose that after sorting the

weights our sample was ordered as FFMMFM. We count two females lighter

than the first man from the left, plus two females lighter than the second man

from the left, plus three females lighter than the third man from the left. Thus

U¼ 7. We could have defined U the other way around, as the number of men

with lower weight than each female in the sample, and then U¼ 2 because

there are two men lighter than the third female from the left.

Now we find the probability of occurrence of each value of U under H0 by

dividing the number of times a given value occurs by the total possible orderings.

In this example, there are 20 possible orderings and the probability of the value of

U being, say, 4 is given by 3/20¼ 0.15 and of being 7 is 2/20¼ 0.10. Calculating

the probability of each value of U gives us the probability distribution of U under

H0,which is shown on the chart in Figure 7.8. From there, we can find the

probability of a value of U at least as extreme as the observed value.

In our example we obtained a value of U¼ 7 or U¼ 2. From the probability

distribution of U we calculate the probability of values of U equal to or greater

than 7 as 0.10þ 0.05þ 0.05 or 20%. In the other direction, the probability of a

value of U equal to or less than 2 is also 0.10þ 0.05þ 0.05 or 20%. Therefore,

the two-sided p-value is 0.40.
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Figure 7.8 Rationale of a non-parametric test for comparing two independent

samples.

144 BIOSTATISTICS DECODED



There are non-parametric tests for many of the problems that we have addressed

so far and still others for problems that we will address further on. We previously

mentioned Fisher’s exact test, which is used to test the association of two nominal

variables. This test replaces the binomial test and the chi-square, but unlike these it

does not have restrictions on its application, except for the independence of

observations.

The test we just discussed is called the Mann–Whitney U test (also called the

Mann–Whitney–Wilcoxon U test and the Wilcoxon rank-sum test), which is used to

test the association between a binary variable and an interval variable and therefore

can be used in place of the Student’s t test, but without restrictions to its application

other than the independence of observations. This test can also be used to test for an

association between a binary and an ordinal variable, and in this context can be

interpreted as a test for the comparison of two population medians.

A non-parametric alternative to the analysis of variance is the Kruskal–Wallis

test which in practice has an identical result to an anova wherein the variable values

have been replaced by their rank in an ascending sorting of all data, disregarding the

groups. This test does not require an attribute to have a normal distribution, but

assumes that its distribution is identical in all groups. In all the tests mentioned, it is

also necessary that the samples are independent.

We have just seen that the notion that non-parametric tests have no restrictions

on their application is not correct. Several of these tests also make assumptions

about the data and in the remainder of this book we will mention the non-parametric

equivalents to the statistical tests of the normal distribution, whenever there are any,

always making reference to their conditions of application.

Another widespread and also incorrect notion about non-parametric tests is that

they must be used in the case of small samples. We already know that the decision

about which test to use does not have to concern only the sample size. Moreover,

non-parametric tests are almost always less powerful than their analogs from the

statistics of the normal distribution when their assumptions are met, and on some

occasions it is even mathematically impossible for a non-parametric test to detect a

difference below a certain sample size. For example, with the Mann–Whitney–

Wilcoxon test, it is impossible to show a statistically significant difference with less

than four observations per group.

Therefore, the statistics of the normal distribution have the advantage of greater

power of the tests and also of providing estimates of differences between population

means and proportions. However, these tests cannot be used with data measured in

ordinal scales because, as we have seen, with these scales the differences between

values have no meaning. Non-parametric tests have the advantage, in general, of

making no assumptions about the distribution of the attributes, or of their scale of

measurement. However, they are not always free of assumptions and it is necessary

to take into account the conditions of application of each test.
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8

Longitudinal studies

8.1 Repeated measurements

Longitudinal studies quite often offer the opportunity to perform repeated measur-

ements in the same subjects. These studies are very common in clinical research. A

cohort of individuals is followed up over a period of time and data from several

attributes is recorded at more or less regular time intervals during the observation

period. Data from a set of attributes that are recorded repeatedly in the same

subjects is called panel data.

These studies allow us to investigate the change in an attribute over a period of

time in a sample of individuals. That is, we can evaluate whether the values of

certain attributes have changed between an initial and a later observation. This

information enables us to assess, for example, if a clinical parameter changes during

the course of a clinical condition or to understand whether a particular therapeutic

intervention is associated with a modification of the course of disease.

We are, therefore, faced with a problem of comparing the average values of an

attribute at two distinct moments in time. This problem, however, cannot be solved

using the methods we have discussed so far, because all of them apply only to the

case of independent samples. This is not the present situation. Here we have a single

sample and obviously we cannot assume independence of the two measurements in

each individual.

In the following sections we will see how we can analyze data from repeated

measurements with statistical methods appropriate for non-independent observations.

8.2 The paired Student’s t-test

When we conduct a study in a sample of individuals and perform two observations of

the same attribute, measured on an interval scale, at two different moments in time or

under two different conditions, the question that we are trying to answer is whether
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the population mean value of the attribute increases or decreases between the first and

second observation. Rephrasing this, we want to assess whether the population mean

difference between the first and second observation in each subject is zero.

Therefore, this problem comes down to the estimation of the population mean

difference between the first and second observation in the same subjects and to the

construction of a statistical test that will tell us whether the average difference

between the two measurements in the same subjects as observed in the sample can be

considered an extreme value under the hypothesis of no difference in the population.

In practice, what we do is to create a new variable whose value is the difference

between the first and second observation in each subject. We will denote this new

variable by D. If x1 and x2 are the first and second measurements in a given

individual, then D¼ x1� x2. From this moment on, the general procedure for

estimating the value of a population mean can be applied. From the central limit

theorem we know that in large samples the sample mean of D comes from a normal

distribution, and from the properties of means we know that the mean of that

distribution is the population mean of D, the value we want to estimate. We can

estimate the value of the standard error of the sample means of D from our data by

dividing the standard deviation of D by the square root of the number of

observations. Then we can set the 95% confidence limits at 1.96 standard errors on

each side of the sample mean of D.

In the case of small samples, the sample means of D are not normally distributed

unless the attribute has a normal distribution, because then D is the difference of

two normal variables and, by the properties of the normal distribution, D will also

have a normal distribution as well as the sample means of D. As in a small sample

the standard error of the means of D will be estimated from the observed data, we

must find in the table of Student’s t distribution how many standard errors estimated

from the data we have to count on each side of the sample mean of D to set the

correct confidence limits. Because we only estimate a single parameter, the standard

deviation of D, we will refer in the statistical table to Student’s t distribution with

n� 1 degrees of freedom.

To construct the corresponding statistical test (Figure 8.1), called the paired

Student’s t-test, we formulate the null hypothesis that the population mean of D is

zero. Then we divide the absolute value of the sample mean of D by its standard

error to find how many times the sample mean of D is larger than its standard error.

The resulting value, t, follows Student’s t distribution with n� 1 degrees of

freedom. We then read in the statistical table what the 5% rejection limit for that

distribution is and, if the value of t exceeds that limit, we reject the null hypothesis.

Suppose we observed a sample of six individuals and in each of them we

measured some attribute with a normal distribution under two different

conditions, for example, before and after they have been exposed to a certain

drug. To test the null hypothesis of no difference between the first and second

measurement, we begin by calculating for each individual the difference

between the first and second measurement. Then we calculate the mean and
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standard deviation of those differences. Let us say that the result was 5 with

standard deviation 4.44. We estimate the standard error by dividing the standard

deviation by the square root of the sample size, that is, 4.44/2.45¼ 1.81. The

t-value of the paired t-test is 5/1.81¼ 2.76. In the table of the t distribution with

6� 1 degrees of freedom the two-sided 5% rejection limit is 2.57 and, therefore,

the sample mean of the differences between the two observations is within the

rejection region and we reject the null hypothesis. The p-value corresponding

to 2.76 standard errors away from the mean is 0.04.

The lower limit of the 95% confidence interval, therefore, is 5�
2.57� 1.81¼ 0.35 and the upper limit is 5þ 2.57� 1.81¼ 9.65.

The non-parametric equivalent of the paired t-test is the Wilcoxon signed-
rank test. This test can be used for large samples and for small samples when

the attribute does not have a normal distribution. It is important to note,

however, that the Wilcoxon test is based on the ranking of the differences

between the two observations in each individual. As it is based on the dif-

ferences between values of an attribute, this test cannot be used with attributes

measured in ordinal scales. In this situation, the appropriate non-parametric test

is the sign test.
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Figure 8.1 Steps in the paired Student’s t-test.
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In the sign test, the null hypothesis is that, in each pair of observations in the

same individual, the probability of the first value being greater than the second is

equal to the probability that the second is greater than the first. To test this

hypothesis, we determine the proportion of subjects in which the first value is

greater than the second, relative to the total number of subjects in which the two

values are different. Under H0 this proportion has a binomial distribution and so we

can find the probability of observing such a proportion, or a more extreme one,

under the hypothesis that H0 is true. From this discussion it follows that the sign test

has no restrictions on its application and can be used with interval, ordinal, and

binary attributes. In the latter case, however, McNemar’s test is more often used, if

the sample is sufficiently large.

8.3 McNemar’s test

As noted above, the sign test is used in matched observations of a binary attribute.

In the same manner as the sign test, McNemar’s test only considers the

observations in which the attribute value changed between the first and second

observation. Under the null hypothesis, we expect that the number of subjects in

which the attribute changed from 1 to 0 would be equal to the number which

changed from 0 to 1. Therefore, the expected number of subjects changing from 0 to

1 is equal to the number changing from 1 to 0 and equal to the total number of

individuals in whom the attribute changed, divided by 2.

We can create a measure of the discrepancy between the observed and the

expected values in the same way as we did for the chi-square test. That is, we

calculate, in those who changed from 0 to 1, and in those who changed from 1 to 0,

the square of the difference between the observed and expected value divided by the

expected value. Adding the two results, we obtain a quantity which follows a chi-

square distribution with 1 degree of freedom.

For example, if the attribute changed from 0 to 1 in 52 individuals and from 1

to 0 in 32, there would be a change in the attribute value between two

observations on 84 individuals. Under H0 we would expect that 42 had changed

from 0 to 1 and 42 from 1 to 0. McNemar’s test is

x2
ð1Þ ¼

ð52� 42Þ2
42

þ ð32� 42Þ2
42

¼ 4:76

We can obtain the test statistic faster by squaring the difference between those

who changed from 0 to 1 and from 1 to 0, and dividing the result by their sum.

In this example, it would be 52� 32¼ 20 squared, divided by 52þ 32¼ 84.

The result, 4.76, is greater than 3.84, the 5% rejection limit for a chi-square

distribution with 1 degree of freedom. Thus, we reject the null hypothesis at the

5% significance level and conclude that it is more frequent that individuals

change from 0 to 1.
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8.4 Analysis of events

One of the most important investigations in clinical research is the analysis of

events. ‘Event’ refers to an instant in time when a clinical manifestation of short

duration arises (e.g., seizure, hypoglycemic coma, myocardial infarction, stroke),

or there is a well-defined transition of the condition of the patient to a different

state (e.g., death, tumor response to treatment, clinical cure), or when the patient’s

clinical condition reaches a certain stage of evolution (e.g., normalization of

blood pressure, reaching a predefined CD4 count). Figure 8.2 illustrates these

three types of events.

Studies aimed at investigating events are always based on longitudinal designs.

As we saw in the discussion on study designs, such studies may be one-sample

cohort studies on a probability sample of the target population, or cohort studies in

the populations exposed and not exposed.

Events may occur only once (e.g., death) or multiple times (e.g., seizures).

Events are special attributes, because they must always be represented by two

variables. In the case of events that can occur only once, or when investigating

only the first occurrence of an event that may occur several times, the event is

represented by a binary variable with value 1 if the event occurred and 0

otherwise, associated with an interval variable recording the time elapsed since

the moment the subject was first observed until the moment the event occurred.

In the case of events that may occur several times, one variable is a count of

the number of events observed in each subject and the other is the total time of

observation of each subject.

Because of this dependence on time, we need special statistical methods for the

analysis of events. In the following sections we will first discuss analytical methods

for the case of events that occur only once, and then the methods used in the case of

multiple events.

8.5 The actuarial method

We begin by discussing the methods used in the analysis of events that occur only

once. We have seen that the data comes from longitudinal studies and, because

individuals need to be observed for a considerable length of time, quite often data

on the time to the event cannot be obtained for all individuals. We have also seen

that the information regarding events has to be encoded in two variables for each

Figure 8.2 Types of events.
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event, one being a binary variable indicating whether the event did or did not occur,

the other being an interval variable counting the observation time until the event

occurred. In those subjects in which the event did not occur, either because they

dropped out of the study, or because the study ended before the event occurred, the

latter variable contains censored data in some subjects. Censored data occurs when

we know that the true value exceeds the measured value, but we do not know by

how much.

We have seen in Section 4.9 that it is possible to analyze the data by the person-

years method, but in this section we will discuss a different approach, generally

referred to as survival-time analysis.

Survival-time analysis estimates over time the proportion of individuals in

whom the event has not occurred. If their data was not censored, that is, if all

individuals in the study had been observed until the event occurred, the proportion

of individuals in whom the event had not occurred up to a given time point would be

easily obtained by dividing, at that time point, the total number of individuals in

whom the event has not yet occurred by the total sample size. However, as there are

virtually always censored data, it is necessary to discount from the total at risk those

individuals who have been censored before that time point. This is what survival-

time analysis does.

The actuarial method is illustrated in Figure 8.3. The method estimates first the

proportion of individuals free of the event in consecutive periods of time of equal

duration, by dividing the number of individuals free of the event at the end of each

period by the total number of individuals still under observation at the beginning of

that period. For example, if at the beginning of month 6 there were still 82

individuals under observation (we call them the number at risk), and during that

month the event occurred in 5, the estimated proportion of individuals free of the

event at the end of month 6 is (82� 5)/82.

As some subjects may have been censored during that month, we halve each one

of those because, on average, censored subjects were observed for half of the length

of the period. If there were, say, 7 subjects censored during month 6, we would

count them only as 3.5 subjects. The estimated proportion of subjects free of the

event at the end of month 6 would be, therefore, (82� 5)/(82� 7/2) or 77/

78.5¼ 98.09%.

Now suppose that in only 91% of the initial sample the event did not occur up to

month 6. What will be the proportion of individuals in the initial sample that will

reach month 7 without having the event? It will be 98.09% of the 91% who reached

month 6 without the event, that is, 0.9809� 0.91¼ 0.893 or 89.3%. This is called

the cumulative probability of the event not occurring.

In summary, the actuarial method estimates for each equally sized period of

time the probability of the event not occurring, taking into account the

individuals actually observed during each time period. Then the method

estimates the probability of the event not occurring in a subject at any given

time by calculating the cumulative probability of the event not occurring since

the beginning of the observation period. This procedure is illustrated in

Figure 8.3.
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With the actuarial method, we first look for the subject with the longest

observation time and we divide that time into equal intervals. In the example

illustrated in Figure 8.4, the initial sample consisted of 74 subjects and the

longest observation period was 15 months.

We may divide the 15 months into intervals of, say, 3 months. Then we

estimate the probability of a subject reaching the end of the first time interval,

that is, the first 3 months without the event having occurred. In the first interval,

6 subjects dropped out of the study and in 5 the study ended before they had

completed 3 months of observation (because they had entered the study less

than 3 months before the study was terminated).

As these 11 subjects who were censored before 3 months count as half, the

total number at risk in the first interval was 74� 5.5, or 68.5 subjects. From this

number we subtract the 6 subjects who reached the event during this period to

obtain the total number who reached the end of the interval without the event

occurring, that is, 62.5. Now we estimate the probability that a subject reaches
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Figure 8.3 The actuarial method.
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the end of the interval without the event occurring, by dividing one value by the

other, 62.5/68.5. The result is 91.2%.

We do the same for the next interval, discounting from the total sample

those in whom the event already occurred, those who were censored in the

previous period, and half of those censored during the current period. In

the example of Figure 8.4, 8 subjects were censored in the 3–6 months period.

The population at risk in the beginning of this interval is 74 of the initial sample

minus 11 censored in the first period and minus 6 in whom the event already

occurred, that is, 57. We deduct half of the 8 subjects censored during this

period to obtain the number at risk in this interval (53 individuals). In 5 of these

the event occurred during the 3–6 months period. Thus, the probability that an

individual who has entered this period reaches the end of the period without the

event occurring is estimated to be 53� 5¼ 48 divided by 53, or 90.6%. But as

only 91.2% of the initial sample have entered this period, by 6 months only

90.6% of the 91.2% of the initial sample, or 82.6%, have not reached the event.

This value was obtained, naturally, by multiplying the two proportions. We

repeat the procedure for each time interval, obtaining for each one the

probability of an individual being free of the event since entry into the study.

We have discussed here how to estimate the cumulative probability of an event

not occurring. If we wanted to estimate the probability of the event occurring, the

procedure would be identical. The actuarial method provides estimates for any of

the periods of time. In the example, the estimate of the probability that the event did

not occur up to 12 months is 67.6%. Additionally, this method allows us to evaluate

the time course of the probability of an event not occurring, known as the survivor

function, which in many situations is also informative. The most common way of

showing the survivor function is with an actuarial curve. Figure 8.5 illustrates the

actuarial curve relating to the data of Figure 8.4.

0 - 3 
3 - 6 
6 - 9 
9 - 12 

12 - 15 

74 
57 
44 
37 
26 

11 
8 
4 
7 
5 
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53 
42 

33.5 
23 .5 

0 . 912 
0 . 906 
0 . 929 
0 . 881 
0 . 915 

0 . 912 
0 . 826 
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0 . 676 
0 . 618 

Interval 
(months) Begin  

total Censored  
in the  

interval 
6 
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3 
4 
2 

Events in  
the  

interval 
Number  
at risk Probability of the  

event not  
occurring 

Cumulative  
probability of the  

event not occurring 

a b c d 
=a -  b e 

=(d - c)/d f 
= e i (f i - 1 )  

Figure 8.4 Illustration of the actuarial method showing on the left the study

data and on the right the computed values; the lower part shows the method

for calculating those values.
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8.6 The Kaplan–Meier method

The Kaplan–Meier method is identical to the actuarial method, the only

difference being that time intervals are defined by the smallest unit of time

used to count observation time. This method is more accurate than the previous

one because the probabilities are computed at each unit of time instead of in

intervals of arbitrary length.

Figure 8.6 illustrates the procedure for calculating the cumulative probabilities

of survival in a cohort of 21 subjects with the Kaplan–Meier method. The time

unit used is the day. The first step is to arrange the study data on a table ordered

by increasing length of observation time. Each entry in the table corresponds to

a study day when something happened, that is, either one or more subjects

reached the event (died, in this example) or were censored.

Then we calculate for each of those days the number of individuals still at

risk. In the example, 21 subjects initiated the study. On day 30 there were still

21 subjects at risk but then 1 subject died and, therefore, after that day only 20

patients remained under observation. On day 50 there were 20 subjects at risk,

1 subject died and 1 was censored, leaving 18 under observation. On day 51 a

subject died, leaving 17 still at risk. On day 66 a subject was censored, leaving

16 in the study. We continue until the last individual, the one who was observed

for the longest time in the study.

We can now estimate the probability of survival in each day. On the first

day of observation no one died, so the probability of survival on day 1 is 100%.

On the second day there were no deaths and, thus, the probability of survival on
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Figure 8.5 Actuarial curve.
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day 2 is also 100%. The cumulative probability of survival on day 2 is

therefore 100% of the 100% who survived to see day 2. The third day is the

same, and so on until day 30. On that day there was one death and

therefore the probability of survival is not 100%. Only 20 of the 21

individuals at risk survived that day and thus the probability of survival on

day 30 is estimated to be 20/21¼ 95.2%. On day 30 we have that 100% of

the subjects included in the study reached that day, but only 95.2% of these

100% survived to this day. Therefore, the probability of survival after 30 days

is 95.2%� 100%¼ 95.2%.

On day 31 no one died, so the survival probability on day 31 is 100% and,

therefore, 95.2% of the initial subjects were still alive. On each of the days 31

to 49 the probability of survival was 100%, but on day 50 only 19 survived out

of the 20 subjects still under study, that is, 95%. Thus, of the 95.2% subjects

from the initial sample that survived to day 50, only 95% of them, that is,

90.5%, survived to day 51.

On day 51 there were only 18 subjects under study, because 1 was censured

on day 50. One subject died on that day, so the probability of survival on day 51

was 17/18, or 94.4%. Therefore, 94.4% of the 90.5% initial subjects survived

after 51 days.

The calculations are done in the same way for each day up to the day that

corresponds to the maximum observation time. Because nothing changes on the

days when there were no events, calculations need to be done only on those

days when events occurred.

Subject  
number 

3 
5 
7 
1 
4 
2 
6 
8 

Days on  
study 

30 
50 
50 
51 
66 
82 
92 

120 

Number 
at risk 

21 
20 
19 
18 
17 
16 
15 
14 

Censored 

1 
1 

1 

Died 

1 
1 
1 
1 
1 

Probability 
of survival 

0 . 952 
0 . 950 
0 . 944 
0 . 938 
0 . 933 

Cumulative 
p robability  
o f survival 

0 . 952 
0 . 905 
0 . 855 
0 . 801 
0 . 748 

a b c d e 
=(d - c)/d 

f 
=e i (f i - 1 ) 

Figure 8.6 Illustration of the Kaplan–Meier method showing on the left the

study data and on the right the computed values; the lower part shows the

method for calculating those values.
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The estimates of the cumulative probabilities at each time point are called

the product-limit estimates (because they are the result of successive

multiplications of survival probabilities as the time intervals are decreased

toward zero). Together, these estimates are called the survivor function. They

are usually presented in a graph called the Kaplan–Meier curve. Figure 8.7

shows the curve for the data in the example of Figure 8.6. In addition to

presenting the cumulative probability at each time unit, these graphics should

include an indication of the subjects at risk on various observation periods and

the distribution of censored data over time. These are usually represented by

vertical lines over the curve, as shown in Figure 8.7. In a well-managed study,

censoring should have occurred randomly over time and in such cases the

vertical lines will be distributed evenly along the entire curve.

The Kaplan–Meier method gives us, therefore, the cumulative probability of an

event occurring, or of not occurring if one prefers, up to a given moment in time.

Each of the computed probabilities, having been estimated from the data, is of course

subject to sample variation. As is customary in statistics, we can obtain interval

estimates of the true value of the cumulative probability for each unit of time.

We can get an approximate value of the standard error of the cumulative

probability on a given day by multiplying the cumulative probability on that

day by the square root of the quotient of one minus that probability and the

number at risk on that day.
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Figure 8.7 Kaplan–Meier curve.
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For example, on day 82 in the previous example, the cumulative

probability of survival is 80.1%. The approximate value of the standard

error is 0.801 times the square root of 1� 0.801 divided by 16, or 0.089.

The lower limit of the 95% confidence interval is given by 0.801 minus

1.96 times the standard error (¼ 0.626) and the upper limit by 0.801

plus 1.96 times the standard error (¼ 0.976). The 95% confidence limits of

the cumulative probability of survival on day 82 are therefore 62.6

to 97.6%.

As we have an estimate of the cumulative probability of survival in each unit of

time, we will also have a confidence interval for each unit of time. Therefore, what

we actually construct here are not confidence intervals, but confidence bands. As

the sample size on which the cumulative probability was estimated decreases over

time, the confidence intervals will consequently also increase over time and the

confidence bands will gradually enlarge from the beginning to the end of the curve

(Figure 8.8).

As mentioned in Section 4.9 on the design of longitudinal studies, because

the drop-outs are often related to the event under study, the existence of a

significant amount of censoring adversely affects the validity of the estimates.

It is generally accepted that the drop-out rate should not exceed 15% of the

initial sample size due to the risk of biasing the results. When presenting the

results of a survival-time study, the median time of observation of individuals

should also be given.
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Figure 8.8 Kaplan–Meier curve with 95% confidence bands.
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8.7 The logrank test

The logrank test allows us to test the null hypothesis that an event occurs with equal

frequency in different populations. In other words, it tests the hypothesis of equality

between several Kaplan–Meier curves (Figure 8.9). As we saw in the previous

section, the Kaplan–Meier curve represents the survivor function, that is, the

cumulative probabilities of survival at each unit of time. These probabilities are

obtained from estimates of the rate of occurrence of the event at each unit of time.

Taken together, these values are called the hazard function.

Thus, in the abstract, the logrank test compares the hazard function of an event

between two or more groups. It is therefore a test of the association between an

event and an attribute measured on a nominal scale defining different populations. It

is possible to use the logrank test for attributes measured on ordinal or interval

scales, but then it is necessary to group the values into classes, thereby converting

these attributes into nominal attributes.

The logrank test has affinities with the chi-square test. It consists of comparing

the number of events observed in each group to the number expected if the hazard

function was the same for all. A measure of the departure of the observed from the

expected numbers is used. Under the null hypothesis of equality of the hazard

functions this measure follows approximately a chi-square distribution, so we can

determine whether the observed departure is an infrequent occurrence under H0.

Consider a study in which we intend to investigate the existence of an

association between the occurrence of an event and the gender of the

individuals. Suppose the time unit is months, the event is death, and gender is a

binary attribute with values male and female.
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Figure 8.9 The logrank test is used to compare two or more Kaplan–Meier curves.

LONGITUDINAL STUDIES 159



For the logrank test, we sort the observation times of all individuals in

ascending order. Then, we write down the population at risk, the dead, and the

censored in each group separately, as shown in Figure 8.10. If the null

hypothesis is true and the hazard function is actually equal in both groups, the

probability of an event occurring in a given month is the same in the two groups

and can be estimated by dividing the total number of events in that month by

the total number at risk.

For example, on month 5 there was 1 death and therefore the estimate of the

probability of death on month 5 is 1/49 subjects at risk on that month, or

2.04%. As on month 5 there were 21 males and 28 females in the study, if the

mortality rate is indeed equal in both genders, the expectation is that 2.04% of

the 21 males have died, as well as 2.04% of the 28 females, or 0.429 males and

0.571 females. On month 11 there were 2 deaths, and therefore the estimate of

the mortality rate in this month is 2/47 individuals at risk or 4.26%. The

expected number of deaths on that month, if the mortality rate is identical in

both groups, would thus be 4.26% of 21 males (¼ 0.894) and 4.26% of 26

females (¼ 1.106).

As shown in Figure 8.10, the total number of deaths observed among males

was 6 and among females was 13. The total expected deaths is obtained by

adding all the expected deaths on each month of observation. As the total

number of observed deaths equals the sum of expected deaths in the two

Observation
time

5
6

11
13
24
30
50
50
51
63
65
66
69
79
82
92
102
115

Males
R     C     D

21
21
21
21
21
21             1
20             1
19      1
18             1
17
17             1
16
16
16
16             1
15             1
14
14    14

Expected M
(TD/TR MR)

0.429

0.894
0.467
0.477
0.488
0.476

0.450
0.436
0.447

0.889
0.471
1.455
0.500
0.483
0.500

Females
R     C     D

28             1
27     1
26             2
24             1
23             1
22
22
22
22
22             1
21
21      1
20             2
18             1
17             2
15
15             1
14    13     1

Total
R     C     D

49             1
48     1
47             2
45             1
44             1
43             1
42             1
41      1
40             1
39             1
38             1
37      1
36             2
34             1
33             3
30             1
29             1
28    27     1

Expected F
(TD/TR × FR)

M: male      F: female      R: at risk      C: censored      D: dead      TD: total dead      TR: total at risk
MR: male at risk      FR: female at risk

6 13 8.861 10.139Total

Figure 8.10 Illustration of the logrank test for the comparison of Kaplan–

Meier curves: left, the study data; right, the computed values.
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groups, we need only to calculate the deaths observed in one of the groups and

obtain the value for the other group by subtracting the total number of expected

deaths in one group from of all deaths observed in the two groups. Thus, under

H0 the number of expected deaths in males is 8.861 and in females is 10.139.

The test statistic, which quantifies the departure of observed to expected

values under H0, is given by the sum across all groups of the squared

difference between observed and expected deaths divided by the number of

expected deaths. In this example, its value is the square of 6 minus 8.861

divided by 8.861, plus the square of 13 minus 10.139 divided by 10.139.

The result, 1.73, follows a chi-square distribution with degrees of freedom

equal to the number of groups minus one. The 5% rejection limit of a chi-

square distribution with 1 degree of freedom is 3.84, and thus the value we

obtained is not large enough to enable us to reject the null hypothesis. If

we read off the p-value in a statistical table of the chi-square distribution,

we obtain the value 0.19.

We can obtain an estimate of the relative risk, in this context usually called the

hazard ratio, by dividing the relative death rates (the ratio of observed to

expected deaths) of the two groups. If the observed number of deaths in males and

females were 6 and 13, and the expected number of deaths were 8.861 and 10.139,

the hazard ratio of males to females would be 6/8.861 divided by 13/10.139, or

0.53. The risk of mortality among men is therefore about half of the risk among

women. The logrank test tells us that the difference in mortality between genders is

not statistically significant (p¼ 0.19). This means that if we constructed the 95%

confidence interval for the hazard ratio, it would include the value 1 which, in turn,

translates to equal mortality risk in both groups.

The determination of confidence limits for the hazard ratio is complicated. An

alternative is to obtain them with Cox regression, a statistical method that can also

replace the logrank test and which will be discussed later on in this book.

8.8 The adjusted logrank test

Consider now that we have explored the issue of an eventual association

between gender and mortality a little further, and noticed that the two groups

had a marked difference in the age distribution. Among the 21 males there were

11 (52%) over 50 years old, but among the 28 women only 9 (32%) were older

than 50 years. As mortality is always associated with age, this observation leads

us to speculate that, had the groups had the same age distribution, the excess

mortality observed in women relative to the expected mortality could have been

even greater, and perhaps we would have had evidence of a difference in

mortality between genders. An attribute such as age, which is simultaneously

related with the attribute that we are investigating and the event under study, is

called a confounding factor.
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The adjusted logrank test is intended to test the association between an event

and a nominal variable, eliminating the confounding effect of one or more external

variables. This test is an extension of the logrank test and, therefore, can be used

only with nominal attributes or, as in this example, with interval attributes (or

ordinal) previously converted into nominal attributes.

The adjusted test postulates that the hazard function is not necessarily the same

in the groups defined by the values of the adjustment variable (confounding factor).

We must therefore estimate a hazard function for the group of subjects under 50

years old and another for the group over 50 years old. Therefore we calculate the

observed and the expected number of deaths in both groups, separately for each

level of the confounding variable, to create a measure of the deviation of the

observed to the expected number of deaths under H0. Then we sum those measures

to obtain a test statistic in the same way as we did for the logrank test. The test

statistic follows the chi-square distribution with degrees of freedom equal to the

number of groups minus one.

In our example, we begin by separating the two age groups and estimating the

hazard function for each one of them. Under H0, the function is the same for

men and women within each age group, so we can calculate the expected

number of deaths in men and women in each age group separately. The results

are presented in Figure 8.11.

Thus, in the group under 50 years old, 1 subject died on month 5 among the

29 at risk on that month. The death rate in this group on month 5 is estimated as

1/29, or 3.45%. Under H0 we expect the death of 3.45% of the 10 men, or

0.345, and 3.45% of 19 the women at risk on that month, or 0.655. In the group

over 50 years old, the first death occurred on month 13, when there were 19

individuals at risk. The death rate on that month for that age group is thus

estimated at 1/19, or 5.26%, and under H0 the rate is equal in both genders.

Consequently, the expected number of deaths is 0.579 in males and 0.421

in females.

The test statistic of the adjusted logrank test is constructed by adding the

total expected and observed deaths for each gender. In Figure 8.11 we can see

that, in men, there were 6 observed deaths and 8.663 expected deaths under H0;

in women, there were 13 observed deaths and 10.337 expected deaths under H0.

We obtain the test statistic in the usual way, by summing across groups the

squared differences between the observed and expected deaths divided by the

expected deaths. In this example it is the square of 6 minus 8.663 divided by

8.663, plus the square of 13 minus 10.337 divided by 10.337. The result (1.50)

follows, as in the unadjusted test, a chi-square distribution with degrees of

freedom equal to the number of groups minus one. The value obtained is below

the 5% rejection limit of a chi-square distribution with 1 degree of freedom, so

we cannot reject the null hypothesis. Finally, even after taking into account the

age difference, we still cannot conclude on a difference between the survival

curves for both genders.
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The adjusted hazard ratio is obtained in the same manner as above, by

dividing the relative death ratios of the two groups. In this example it would be

6/8.663 divided by 10/13.337, or 0.55.

8.9 The Poisson distribution

If the event under study can occur several times in the same individual during the

period of observation, we cannot use the methods we have just discussed, unless we

sacrifice information and use only the first occurrence of the event, for example.

The methods that allow us to analyze events occurring repeatedly are collectively

called event-count analyses.

In cohort studies designed to investigate this type of event we obtain for each

individual the duration of the observation period and the number of events during

this period. If the observations are independent and the occurrence of the event

does not show a time trend, we can divide the total number of events observed

on the entire cohort by the sum of observation times of all subjects in the cohort.

Observation 
time 

5 
11 
24 
50 
51 
65 
69 
79 
92 
115 

      Males 
R      C      D 

10 
10 
10 
10             1 
  9             1 
  8             1 
  7 
  7 
  7             1 
  6      6 

Expected M 
(TD/TR × MR) 

0.345 
0.714 
0.385 
0.400 
0.375 
0.348 
0.636 
0.350 
0.368 
0.333 

   Females 
R      C      D 

19             1 
18             2 
16             1 
15              
15              
15 
15             2 
13             1 
12 
12     11    1 

     Total 
R      C      D 

29             1 
28             2 
26             1 
25             1 
24             1 
23             1 
22             2 
20             1 
19             1 
18    17     1 

4 8 4.255 

Expected F 
(TD/TR × FR) 

7.745 Total 

Age <50 years old 

Observation 
time 

6 
13 
30 
50 
63 
66 
82 

102 

     Males 
 R      C      D 

11 
11 
11              1 
10      1 
  9 
  9 
  9              1 
  8      8 

Expected M 
(TD/TR  MR) 

0.579 
0.611 

0.563 

1.929 
0.727 

    Females 
R      C      D 

  9     1 
  8             1 
  7 
  7 
  7             1 
  6      1 
  5             2 
  3      2     1 

     Total 
R      C      D 

20     1 
19             1 
18             1 
17     1 
16             1 
15     1 
14             3 
11   10      1 

2 5 4.408 

Expected F 
(TD/TR × FR) 

2.592 Total 

R: at risk       C: censored        D: dead 

Age >50 years old 

Figure 8.11 Illustration of the adjusted logrank test.
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This gives us a measure of the frequency of the event called, as we saw earlier,

incidence density, which is expressed as number of events per person-years.

Thus, in the case of events that can occur repeatedly in the same individual the

quantity we want to estimate in the population is the incidence density. Naturally,

the incidence density observed in a study is an observation from a random variable

and is subjected to sampling variation. Therefore, we aim to find confidence limits

for the population incidence density and in order to do that we need to know the

distribution of sample incidence densities.

Suppose we monitored a cohort of 156 patients for the appearance of colon

polyps with the aim of estimating the rate of occurrence of colorectal adenomas.

Patients in this cohort were observed for variable lengths of time and, in all, these

156 patients were observed for a total of 15 295 months. During this time a total of

171 adenomatous polyps were identified and removed by colonoscopy.

If we look closely at the data we will find that during most months no polyps

were identified, that on a few dozen months a single polyp was identified, and that,

very occasionally, two polyps were identified in the same month. Additionally, the

occurrence of a polyp in any given month is independent of whether or not polyps

occurred in the previous or subsequent months. Therefore, whatever happens in each

month is independent of what happens in any other months. Consequently, we may

consider that the event is a binary variable with a defined probability and that the

total number of observed polyps corresponds to the total number of hits in 15295

independent trials. Thus, as we saw earlier, we expect the total number of hits (the

polyps) observed on a cohort to have a binomial distribution, whose parameters p

and n are the incidence rate of the event and the total observation time, respectively.

However, in situations such as those typically observed in incidence studies,

where the probability of occurrence of an event per unit of time (the incidence rate)

is very small and the number of trials (the total time of observation, or persons-

time) is very large, the total number of events observed in a cohort is best described

by the Poisson distribution than by the binomial distribution.

The Poisson distribution is therefore suitable for describing the probability

distribution of rare events. This distribution counts, for a binary variable, the number

of hits in a number of trials. This probability distribution has the peculiarity of

possessing a single parameter, the mean, because its variance is equal to the mean.

For estimating the value of the standard error of the number of events, we use

the estimate of the population variance obtained in our sample. In this example, the

estimate of the variance of the number of events is equal to the total number of

events observed, that is, 171. As the incidence density is a measure obtained by

dividing the total number of events by persons-time, the estimate of the variance of

the incidence density is equal to the number of events also divided by persons-time.

Therefore, we can estimate the standard error of the incidence density by the

square root of the quotient of the sample variance of the incidence density and

the number of trials (the persons-time). To find the confidence limits we refer to the

Poisson distribution. However, there is an easier ways to obtain these limits.

We can take advantage of the convergence of distributions. We saw above that

the Poisson distribution arises when, in a binomial distribution, the probability of a
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hit is very small. This means that when the probability of an event increases, and

therefore also the number of observed events, the Poisson distribution converges to

the binomial. In addition, we have also seen that the binomial, in turn, converges to

the normal when the number of trials is large, as is typically the case in this type of

problem. In conclusion, when the number of events is large (say, more than 10), we

can use the normal approximation to find confidence limits using the square root of

the number of events divided by the total observation time as an estimate of the

standard error of the sample incidence density.

Here is how to construct 95% confidence limits for the incidence density (ID).

The standard error of ID is the square root of the variance divided by the

number of trials, in this case the persons-time (PT):

SEðIDÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðIDÞ
PT

r

On the other hand, the variance of ID is equal to the number of observed events

(the incidence I of the event) divided by the persons-time

varðIDÞ ¼ I

PT

Therefore, the first expression becomes

SEðIDÞ ¼
ffiffiffiffiffiffiffiffiffiffi
I=PT

PT

r
¼

ffiffiffiffiffiffiffiffi
I

PT2

r

which can be written as

SEðIDÞ ¼
ffiffi
I

p

PT

The sample variance of the number of events is equal to the total number of

observed events. In the example of the colon polyps, its value is 171. The

sample variance of ID is equal to the sample ID and both are equal to 171

divided by PT, or 171/15 295¼ 0.0112.

The standard error of ID is the square root of the total number of observed

events divided by PT, or 0.000 85. Using the normal approximation, the 95%

confidence limits are 0.0112� 1.96� 0.000 85¼ 0.0095 per person-month and

0.0112þ 1.96� 0.000 85¼ 0.0129 per person-month.

Another way of constructing the confidence interval is by working on a linear

scale using the natural logarithm of the incidence density, as we did before for the

confidence limits of odds ratios. The standard error of the logarithm of the sample

incidence density is equal to the square root of the reciprocal of the total number of

events. Thus, the 95% confidence limits for the logarithm of the population

incidence density are obtained by adding and subtracting 1.96 times the standard
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error from the logarithm of the incidence density. Then we return to the original

scale by exponentiation of those limits.

In the example, the sample ID is 171/15 295, or 0.0112, and its logarithm is

�4.494. The standard error of the logarithm of the incidence density is equal to

the square root of 1/171, or 0.076 47. The 95% confidence limits of the

logarithm of the population incidence density are �4.494� 1.96� 0.076 47

and �4.494þ 1.96� 0.076 47, that is, �4.6439 to �4.3441. Exponentiation of

these values gives 0.0096 and 0.0130, practically the same result we obtained

above. Thus, the 95% confidence limits for the incidence density are 0.96 to

1.30 per 100 person-months. The interpretation of the incidence density is

therefore that in a cohort of 100 people we would expect to observe about 1 to

1.3 polyps every month, or alternatively, on a person observed for 100 months,

we would expect to observe about 1 to 1.3 polyps.

8.10 The incidence rate ratio

We saw earlier that differences between proportions are generally expressed as ratios.

The same applies for rates, such as the incidence density, and the difference between

two incidence rates can be expressed as the incidence rate ratio. Therefore, the
incidence rate ratio (IRR) is a measure of association between a binary variable and

an event. Of course it can also be used as a measure of association for attributes on

any scale, as long as they are converted to a binary attribute. We can investigate the

association of events with interval attributes without having to dichotomize them by

a method called Poisson regression. In this section we will discuss the problem of

comparing only two incidence densities.

We will expand the example of the previous section. Suppose we now want to

investigate whether the incidence of colorectal polyps is associated to the gender of

individuals. In other words, we want to find whether there is a difference between

the incidence rates of colorectal polyps in the male and female populations.

In our sample, men were observed for a total of 11 165 months and during that

time a total of 139 polyps were identified. Women were observed for a total of 4130

months and a total of 32 polyps were identified. The sample incidence density in

men was 139/11 165¼ 0.0125 and in women 32/4130¼ 0.0077. The estimate of the

IRR is, therefore, 0.0125/0.0077¼ 1.6068. The 95% confidence limits for the

population IRR are obtained, as before, using the logarithm of IRR, which we

denote by ln(IRR).

In this example the logarithm of 1.6068, the incidence rate ratio, is 0.4742. The

standard error of ln(IRR) is equal to the square root of the sum of the reciprocal

of the events observed in each group. In this example, its value is equal to the

square root of 1/139þ 1/32, or 0.1961.
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Using the normal approximation we compute the 95% confidence limits of

ln(IRR). The lower limit is 0.4742� 1.96� 0.1961¼ 0.0898 and the upper

limit is 0.4742þ 1.96� 0.1961¼ 0.8586. The 95% confidence limits in the

original scale are obtained by the exponentiation of those values, giving 1.094

and 2.360.

The 95% confidence interval for the population IRR in our example is 1.09 to

2.36. This means that the incidence of colorectal polyps is, with 95% confidence,

somewhere between 9 and 136% greater in men than in women. Since the value 1 is

not within the 95% confidence interval, we can reject the null hypothesis of no

difference in the population incidence densities between genders, at the 5%

significance level.

Instead of calculating the confidence limits of ln(IRR) followed by exponentia-

tion of the results, we can obtain the limits directly on the original scale by

multiplying the observed IRR by the exponential of �1.96� SE ln(IRR) for the

lower limit, and by the exponential of þ1.96� SE ln(IRR) for the upper limit.

We can build a statistical test by dividing ln(IRR) by the standard error of

ln(IRR) and reading in the table of the normal distribution the probability of

obtaining such a high value under H0. In this example, the z-value is 2.418, which

corresponds to a p-value of 0.016. There is therefore evidence that male gender is

associated with a higher incidence of colorectal polyps, which is estimated to be

from 9 to 136% greater than the incidence in females.

Event-count analysis has a number of limitations due to the strong assumptions

it makes. One assumption is that the variance of the number of events is equal to the

mean, which may not be valid if some individuals have zero events and others have

a large number of events. Another assumption is that the incidence rate is constant

over time, which may not be the case in many clinical situations, such as the rate of

deaths from cancer or the incidence of adverse events from medication. For this

reason these methods should be used with caution.
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9

Statistical modeling

9.1 Linear regression

The statistical method used for the investigation of associations between two interval

variables is linear regression. This method is based on the same principles of the

methods discussed so far, modeling the relationship between the variables and testing

the plausibility of the model under the null hypothesis of independence of the variables.

Suppose we wanted to investigate the association between the body height of a

person and the forced vital capacity (FVC), a measure of pulmonary function that

measures the volume of air in liters expelled from the lungs during a forced

exhalation. We would need a random sample of individuals and we would measure

for each one of them the body height and the FVC. The study data would look like

the data of Figure 9.1, which were collected on a sample of 20 healthy subjects. On

the right, on the scatterplot, the most adequate form of visual presentation of an

association between continuous variables, each point represents an individual whose

FVC and height are read, respectively, on the vertical and horizontal axis.

When there is directionality in the relationship, that is, when the values of one

attribute determine in some way the values of the other, the determinant attribute

is placed on the horizontal axis and the determined attribute on the vertical axis.

In this example, if the two attributes are related, then the height of a person may

determine the FVC to some extent, but the FVC certainly does not determine the

height. The putatively determined attribute is called the explained or dependent
variable. The determinant attribute is called the explanatory or independent

variable. Although it is generally recognized that the terms explained and explana-

tory are more adequate to designate the variables, in the literature there is a clear

preference for the terms dependent and independent. We will just follow that trend

and use the latter terms.

If now we want to represent the relationship between the two attributes, the

simplest way is of course to draw a line running approximately through the center
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of the cloud of points. If we want to represent the relationship in the simplest way

possible, without a doubt we will choose a straight line, the simplest of all lines. In

the graph at the bottom of Figure 9.1, the line represents a model of the association

between the two attributes that, although very simple, is an impressively powerful

method for describing and analyzing relationships among attributes, as we will

see in the following sections.

The name given to this line is the regression line of the dependent on the

independent variable. Intuitively, we realize that a regression line will be horizontal

when there is no relationship between the attributes, because it means that the

average value of the dependent variable (FVC in this example) does not vary with

the independent variable (height). In other words, a horizontal line means that the

average value of FVC is the same whatever the height and, therefore, the two

attributes are not related.

On the other hand, if the line is oblique, this means that FVC values tend to

increase with height (as in Figure 9.1), or decrease if the line has a downward slope.

That is, the values taken by the dependent variable are conditioned by the values of

the independent variable and thus there is an association of the two variables.

Height 
(cm) 

  FVC 
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171 3.44 

166 3.87 

167 3.52 

170 4.84 

168 3.64 

170 3.63 
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171 4.25 

159 2.19 

160 2.86 

177 4.66 

165 3.52 

163 4.03 
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180 4.23 
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Figure 9.1 Representation of the relationship between two interval variables.
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Thus, a straight line is the simplest model of the relationship between two

interval-scaled attributes, and its slope gives us an indication of the existence of an

association between them. Therefore, an objective way to investigate an association

between interval attributes will be to draw a straight line through the center of the

cloud of points and measure its slope. If the slope is zero, the line is horizontal and

we conclude that there is no association. If it is non-zero, then we can conclude on

an association.

So we have two problems to solve: how to draw the straight line that best

models the relationship between attributes and how to determine whether its slope

is different from zero. We will begin by discussing the first problem.

9.2 The least squares method

Of all the straight lines we could draw through the cloud of points, the one that best

represents the relationship between the two variables would logically be the line

that runs exactly through the middle of all the points. But what does this mean, and

how do we find that line?

If we think of a circumference, its center is defined by the point which is

exactly at the same distance from all other points. In slightly more formal terms,

we could say that the center is, of all the points we could choose inside a

circumference, the one in which the variance of the distances to all the points on

the circumference is the smallest of all (and equal to zero in this case).

Generalizing this definition to any other shape, regular or irregular, we can define

the center as the point in which the variance of the distances to all other points is

the smallest of all. By the same token, we can define the line passing through the

middle of all points as the one in which the variance of the distances of the points

to the line is minimal.

As is well known, the position of a straight line in a two-way graph can be

defined by its slope and its intercept. Thus, each value y� of the variable Y, on the

line shown in Figure 9.2, is defined by the slope, that is, a certain value b, which

multiplies the value of X, to which is added the value a of Y corresponding to the

value 0 of X. In other words, each value y� is equal to aþ bx. This is the equation

of the straight line.

Thus, in a scatterplot in which we fitted a straight line to the cloud of points

in order to model the relationship between the attributes, the location of each

point on the graph can be expressed as a function of that line by y¼ aþ bxþ e

(see Figure 9.2), where e is the distance between the observed value y and

the value y� predicted by the regression line. Therefore, e is a measure of the

distance of a point to the line. So now we can define the best straight line, the

one that runs exactly through the middle of all the points, as the one line among

all lines we can possible draw through a cloud of points for which the variance

of e is the smallest.

We therefore need to find the line that minimizes the sum of squares of the

differences of Y to the regression line, those differences being the quantities referred
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to above and in Figure 9.2 and as e. The method for determining this straight line is

called the least squares method. Let us see what the foundation of this method is.

Figure 9.3 shows a scatterplot of three pairs of values (x, y) and we want to find

the straight line that minimizes the sum of squared deviations of y to the line. Let us

start by finding a point that, because of its position exactly at the center of the cloud

of dots, certainly belongs to the line we want to find. That point is the centroid of

the cloud of dots. From geometry we know it is defined by the means of X and Y,

which we denote by �x and �y. Now let us draw for every point (x, y) a straight line

joining the point to (�x, �y).
We can now find the slope of each of these lines, using (�x, �y) as reference. By

doing so we are, in essence, creating a new variable that condenses the information

of each pair of observations (x, y) into a single value, the slope of a straight line

passing through the point defined by the pair of values and by (�x, �y). If we now

average the values of this new variable, what do we get?
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y 
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Figure 9.2 Rationale of the least squares method.
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Figure 9.3 Rationale of the least squares method.
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We get a quantity that is the average of the slopes of all the straight lines that we

can draw connecting each point to (�x, �y). However, we need to consider that the points
farthest from (�x, �y) are less frequent, and therefore we should include a weighting

factor to compensate for the lower probability of observing the more extreme values in

a sample. We can do this by assigning a weight to each value such that more extreme

values have greater influence on average. Thus, we compute a weighted average of all

the slopes to obtain the slope of the regression line we wanted to find.

What are the properties of this average? In any distribution, the quantity for

which the sum of the squares of the differences to all other values in the distribution

is the smallest of all is, precisely, the mean of the distribution. In other words, the

mean is the value that minimizes the sum of squares of the deviations.

Accordingly, the weighted mean of the slopes of all straight lines that can be

drawn in a sample of pairs of values (x, y) joining each pair with (�x, �y) is, by

definition, the slope of the straight line that minimizes the sum of squares of the

deviations, that is, of the least squares regression line.

Once we know the value of the slope b, obtaining the value of the intercept a

in the equation of the straight line Y¼ aþ bX is straightforward: if �y ¼ aþ b�x; then
a ¼ �y� b�x (Figure 9.4).

Let us now find what the value of the slope of the least squares line is. Using (�x,
�y) as reference, the slope m of a straight line through point (x, y) is equal to

(y��y)/(x��x). Now, to compute the average of the slopes we will use as

weights the distance of each value of X to the mean of X. As it is irrelevant for

this purpose whether the difference is positive or negative, we will square the

difference to remove its sign. The weights are, therefore, ðx� �xÞ2.
Aweighted average is obtained by the sum of the product of each value and

its corresponding weight, divided by the sum of all the weights. Therefore, the

weighted average of slopes is the sum of all products of ðy� �yÞ=ðx� �xÞ by
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Figure 9.4 Rationale of the least squares method.
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ðx� �xÞ2 divided by the sum of all ðx� �xÞ2 or, more simply, the sum of

ðy� �yÞðx� �xÞ divided by the sum of all ðx� �xÞ2.
In mathematical notation, if we represent a sum by a capital sigma

P
(the Greek letter for ‘S’), the slope of the regression line is obtained by

b ¼

X ðy� �yÞ
ðx� �xÞ ðx� �xÞ2

� �
X

ðx� �xÞ2

which can be simplified to

b ¼
X

ðy� �yÞðx� �xÞX
ðx� �xÞ2

In words, this expression says that the slope of the least squares line is equal to

the sum of the products of the distances of the points to the means of the

dependent and independent variables, divided by the sum of squares of the

independent variable.

9.3 Linear regression estimates

In the example of the relationship between FVC and body height, the equation

of the regression line obtained by the least squares method was FVC¼
�12.92þ 0.099� height. The interpretation of this result is evident, taking into

account the meaning of the coefficients a and b in the equation of the line. Thus, the

value 0.099, which multiplies the independent variable, corresponds to the

coefficient b, the slope of the line, here called the regression coefficient. Therefore,

0.099 liters is by how much FVC increases for each increment of 1 cm in height. If

the relationship between FVC and height was the inverse, this coefficient would

have a negative sign. It is also useful to think of the value of the regression

coefficient as the difference of the mean values of the dependent variable between

any two consecutive values of the independent variable.

The value �12.92, here called the regression constant, represents the inter-

section of the line and the vertical axis, that is, the value of the dependent variable

predicted by the regression when the independent variable takes the value 0. At first

glance, this would mean that the predicted value of FVC is �12.92 liters for a

height of 0 cm, obviously an impossible value for FVC. However, this interpretation

is not legitimate because the regression line was determined only for height values

between 159 and 180 cm. Outside this range, we cannot make predictions about

the value of FVC because we do not know whether the slope of the regression line

will be the same outside this range.

Let us find the predicted value of FVC for the minimum height in our sample,

159 cm. Substituting this value into the equation and solving �12.92þ 0.099� 159,

we get 2.82 liters for FVC, not terribly different from the observed value of 2.19 liters.
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This difference of 2.82� 2.19¼ 0.63 liters, the error in the prediction of the value of

FVC, corresponds to the value of e mentioned above and is called a residual. The

residual encompasses the measurement error of height, the measurement error of

FVC, and part of the variability of FVC that is not explained by height.

Clearly, individuals of the same height do not all have the same FVC. Therefore,

if we repeated this study for a different sample of individuals with the same heights

as those in the study, the values we would find for FVC would not be exactly

the same. Consequently, the position of the regression line will vary slightly from

sample to sample. More specifically, in each repetition of the study we would

obtain slightly different values for the regression constant and coefficient.

The parameters of the regression line, the slope and intercept, are therefore

subjected to sampling variation and the values of these parameters obtained from a

sample are merely point estimates of the true values of the intercept and slope. This

means that, if we know the sampling distribution of these parameters, we can

construct confidence intervals for their true values.

As we saw earlier, the indication of the existence of an association between

variables is given by a non-zero slope of the regression line. Thus, although very

occasionally in clinical research it may be of interest to estimate the true value of

the intercept, we are usually only interested in estimating the true value of the

regression coefficient.

Let us consider first the probability distribution of the sample regression

coefficients. We have seen that the coefficient b is the result of the sum of

observations of random variables, the slopes of the straight lines connecting each

point to the center of the cloud of points. Therefore, from the central limit

theorem, if the number of observations is large the regression coefficient will

have a normal distribution. In small samples its distribution will be normal only

if the slopes of the straight lines connecting each point to the center of the cloud

of points have a normal distribution. The numerator of the slopes is a random

variable subtracted from a constant, and the denominator, if the independent

variable is interval, is also a random variable subtracted from a constant.

Therefore, in small samples we know that the regression coefficient has a normal

distribution if the dependent variable has a normal distribution at each value of

the independent variable, and if the independent variable (if it is interval) has

also a normal distribution.

Now that we know that, under these assumptions, the sampling distribution of

the regression coefficient is normal, in order to build confidence intervals we need

only to estimate the standard error of the regression coefficient.

The same reasoning that we used earlier to find the standard error of sample

means will allow us to find the standard error of the regression coefficient. We saw

above that the regression coefficient b is the weighted average of the slopes m of all

the straight lines that we can draw connecting each of the points defined by a pair of

values (x, y) to ð�x;�yÞ; and that the weighting factor is ðx� �xÞ2. Therefore, the
squared standard error of b is the weighted variance of the slopes m divided by

the sample size. This turns out to be equal to the variance of the residuals divided

by the sum of squares of the independent variable.
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We need to find what the variance of the slopesm is. Aweighted variance is equal

to the sum of the product of the squared differences to the weighted mean and the

weighting factor, divided by the sum of all the weights. As shown in Figure 9.5,

the difference of each slopem from the weighted mean of the slopes (the slope of

regression line) is ðy� �yÞ=ðx� �xÞ � ðy� � �yÞ=ðx� �xÞ or ðy� y�Þ=ðx� �xÞ.
Now, (y� y�) is the residual e, the deviation of the observed y to the value

y� predicted by the regression. So we can write the difference from the slope m

to the weighted average of slopes as e=ðx� �xÞ: Thus, the squared deviations of

each slope m from the weighted mean is e2=ðx� �xÞ2.
The weighted variance of the slopes m is the sum of e2=ðx� �xÞ2 multiplied

by the weighting factor ðx� �xÞ2, divided by the sum of the weights.

var mð Þ ¼

X e2

ðx� �xÞ2 ðx� �xÞ2
X

ðx� �xÞ2

As the terms ðx� �xÞ2 in the numerator cancel out, the weighted variance is

equal to
P

e2=
P ðx� �xÞ2.

Therefore, the estimate of the standard error of b will be the weighted

variance of the slopes m divided by the sample size. Actually, such an estimate

will be biased, because the two parameters of the regression line a and b are not

the true population values a and b, but were chosen to define a line through the

exact center of the observed values. Therefore, we must divide the weighted

variance of the m by n� 2 to account for the two parameters estimated from the

sample and thus obtain an unbiased estimate of the standard error of b.

We can simplify this expression further. Let us write it first as

SE bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

e2=
X

ðx� �xÞ2
ðn� 2Þ

s
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y

regression line
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Figure 9.5 The slope m of a line connecting ð�x; �yÞ to an observation (x, y) is

ðy� �yÞ=ðx� �xÞ. The weighted average of the slopes is ðy� � �yÞ=ðx� �xÞ. Their
difference is ðy� y�Þ=ðx� �xÞ.
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This is the same as

SE bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

e2�
n� 2ÞP ðx� �xÞ2

vuut

but in this expression
P

e2=ðn� 2Þ; or P ðy� � yÞ2=ðn� 2Þ if you prefer,

is the variance of the residuals since e has zero mean, which we call the

residual mean square. Therefore, the standard error of b can be written as

SE bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðeÞP ðx� �xÞ2

s

Figure 9.6 shows the procedure for obtaining the estimate of the standard

error of the regression coefficient. In the example of the regression of FVC

on height, the sum of squares of the residuals is 4.835. The estimate of the

variance of the residuals is obtained by dividing 4.835 by n� 2¼ 18 degrees

of freedom. The result is 0.269.
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(cm) 
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166 3.87 
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168 3.64 

170 3.63 
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159 2.19 

160 2.86 
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165 3.52 

163 4.03 
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180 4.23 
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Figure 9.6 Steps in the calculation of the standard error of the regression

coefficient.
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The standard error of the regression coefficient is the square root of

0.269 divided by the sum of squares of height. An easy way to obtain the

sum of squares is by multiplying the variance of height by n� 1. Thus,

as the variance of height is 30.05, the sum of squares is given by

30.05� 19¼ 570.95.

The standard error of the regression coefficient is thus the square root of

0.269/570.95, or 0.022.

This estimate of the true standard error of b is unbiased on the condition that

the dispersion of the points about the regression line is approximately the same

along the length of the line. This will happen if the variance of Y is the same for

every value of X, that is, if Y is homoscedastic. If this condition is not met, then the

estimate of the standard error of b may be larger or smaller than the true standard

error, and there is no way of telling which.

In summary, we can estimate the standard error of the regression coefficient from

our sample and construct confidence intervals, under the following assumptions:

� Thedependentvariablehasanormaldistributionforallvaluesof the independent

variable.

� The variance of the dependent variable is equal for all values of the independent

variable.

� If the independent variable is interval its distribution is normal.

� The relationship between the two variables is linear.

To obtain the 95% confidence limits we proceed in the usual manner. As

the value of the standard error was estimated based on empirical data, we use

Student’s t distribution to find the number of standard errors estimated from the

data that have to be counted on each side of the value of the regression coefficient

to set the correct 1�a confidence limits. As our data was used to estimate two

parameters, the intercept and slope of the regression line, we must refer to

Student’s t distribution with n� 2 degrees of freedom. If the sample is large, we

can use the appropriate z-value from the table of the normal distribution to set

the confidence limits.

In the example we have been working on, the standard error of the regression

coefficient estimated from 20 observations is 0.022. In Student’s t distribution

with 18 degrees of freedom, 95% of the observations are within 2.101 estimated

standard errors from each side of the mean. Therefore, the limits of the 95%

confidence interval are obtained by 0.099� 2.101� 0.022, that is, 0.053 to

0.145 liters. Note that the change of units does not affect the regression line,

although it does affect the regression coefficient. If we rather measured the

height in meters instead of centimeters, the regression equation would be

FVC¼� 12.92þ 9.9� height (in meters) and the confidence interval would

be 5.3 to 14.5 liters.
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As usual, we can construct a test of the null hypothesis that the true (population)

value of the regression coefficient is zero to test the association between the two

variables. The null and alternate hypotheses of the test are H0: b¼ 0 and HA: b 6¼ 0.

For this purpose, we divide the sample regression coefficient by its standard

error and we read in a table of Student’s t distribution with n� 2 degrees of freedom

the probability under H0 of obtaining a value for b at least as large as the observed

value. In this example, the value of the test statistic is 0.099/0.022¼ 4.5, far greater

than 2.101, the 5% rejection limit based on a t distribution with 18 degrees of

freedom. Consequently, we may conclude on an association between FVC

and height.

9.4 Regression and correlation

We can transform a normal distribution into any other distribution with a

different mean and variance just by multiplying its values by a constant and adding

another constant.

If we look at the regression equation y�¼ aþ bx we realize that when we

predict the values y (denoted as y�) from the values x we are applying a trans-

formation of X on Y.

If the regression fits the data perfectly, the regression equation will transform X

exactly into Y and the predicted values y� will have exactly the same distribution

as the values y of the dependent variable. On the other hand, if the regression is

less than perfect, there will be a departure of the values y from those predicted by

the regression equation and therefore the variance of y will be greater than the

variance of y�.
Therefore, the variance of y� represents the variance of Y that is explained by the

regression of Y on X. Thus, if we divide the variance of y� by the variance of y, we

will obtain the proportion of the variance of Y that is explained by the regression.

In the same example, the variance of the predicted values of FVC is 0.294 and

the observed variance of FVC is 0.549. Dividing the former by the latter, we obtain

0.536. This result means that about 53.6% of the variance of FVC is explained

by the body height. Therefore, in order to be able to explain (and predict) FVC

completely, we need to find the variables that explain the remaining 46% of

its variance.

This measure is called the coefficient of determination and it is an important

measure of association between variables. It is usually represented as R2 because its

value is the square of another measure of association frequently used, called the

correlation coefficient, which is represented by r. In this example, the correlation

coefficient is therefore 0.73, the square root of 0.536.

Although we can obtain R2 from r, the two measures are not completely

equivalent. The coefficient of determination has values between 0 and 1, while the

correlation coefficient ranges from �1 to þ1. That is, the correlation coefficient, in

addition to providing a measure of the strength of an association, also informs us

of the type of association, a negative value meaning that the two attributes have
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an inverse relationship that is, one increases as the other decreases. In both cases,

the greater the absolute value of the coefficient, the greater the strength of the asso-

ciation. However, unlike the coefficient of determination, the correlation coefficient

is an abstract value that has no direct and precise interpretation, somewhat like

a score. For this reason, it is being replaced by R2.

These two measures are related to the degree of dispersion of the observations

about the regression line. In a scatterplot, when the two variables are indepen-

dent, the points will be distributed over the entire area of the plot. The regression

line is horizontal and the coefficient of determination is zero (Figure 9.7). When

an association exists, the regression line is oblique and the points are more or

less spread along the line. The higher the strength of the association, the less

the dispersion of the points around the line and the greater will be R2 and the

absolute value of r. If all the points are over the line, R2 has value 1 and r value

þ1 or �1.

The importance of these measures of association comes from the fact that it is

very common to find evidence of association between two variables, and it is the

strength of the association that tells us whether it has some important meaning. In

clinical research, associations explaining less than 50% of the variance of the

dependent variable, that is, associations with R2 less than 0.50 or, equivalently, with

r between �0.70 and 0.70 are usually not regarded as important.

9.5 The F-test in linear regression

We can test the null hypothesis that b¼ 0 with a different test based on analysis of

variance. Recall the reasoning we made when discussing anova for the problem of

comparing several means, and let us make an analogy here. Figure 9.8 compares

a situation where the null hypothesis is true, on the left, with a situation where the

null hypothesis is false, on the right. When the two variables are independent, b¼ 0

and the slope of the sample regression line will be very nearly zero (not exactly zero

because of sampling variation).

An estimate of the variance s2 of Y for fixed values of X can be obtained from

the variance of the residuals, that is, the variance of the departure of each y from

X 

Y 

R 2 = 0   r = 0 

X 

Y 

R 2 = 0.50   r = 0.71 

X 

Y 

R 2 = 0.90   r = 0.95 

Figure 9.7 Scatterplots with regression lines illustrating different situations and

the corresponding coefficients of determination and correlation.
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the value y� predicted by the regression (dashed lines in Figure 9.8). We will denote

this estimate by s20 and call it the residual mean square.

Now, if H0: b¼ 0 is true, s20 will be very nearly equal to an estimate s2T obtained

from pooling together all the observed values y. However, if the null hypothesis is

false (Figure 9.8, right), the regression line will be steep and the departures of the

values y from the regression line will be less than the departures from �y. Therefore,
the residual mean square will be smaller than the total variance of Y. We could

compare the two estimates s2T and s20 by taking the ratio s2T=s
2
0. The resulting

variance ratio would follow an F distribution if the two estimates of s2 were

independent, and if the null hypothesis were false the variance ratio would have a

value much larger than expected under H0.

This is not the case, though. As both estimates were based on the same data,

they are not independent. But the concept is appealing and so we need to look for

a way of obtaining another estimate of s2.

Remember that in anova we obtained a third, independent estimate of s2 from

the observed variance of sample means. Knowing that under H0 the observed

variance of sample means is equal to s2/n, we calculated the variance of sample

means directly from the data as the sum of squared deviations of the sample means

to the grand mean divided by the number of sample means. Then, by multiplying

this estimate of the variance of sample means by n, we obtained an independent

estimate of s2 under H0.

We can do something equivalent in linear regression. Consider a set of obser-

vations on two uncorrelated variables X and Y. Figure 9.9 shows the regression line

of Y on X fitted to four points (x, y). We have already seen that the sample

regression line must pass through a point defined by the sample means of Y and X,

that is, through ð�x;�yÞ. As H0 is true, we know that the slope b of the regression line

is due only to sampling variation and that the mean of the distribution of b is zero,

the true slope of the regression line in the population.

As is shown in Figure 9.9, under H0 the deviation of each slope m of the line

connecting ð�x;�yÞ to (x, y) from the true slope 0, that is, from ðy� �yÞ=ðx� �xÞ, is
partly due to the variance of Y and partly due to the sampling variation of b. The

variance of Y accounts for the difference between the slope m and the slope b of the

X 

Y y 

X 

Y y 

Figure 9.8 Illustration of the relationship between the total variance of Y and the

residual variance in the case of true (left) and false (right) null hypotheses.
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regression line, and the sampling variance of b accounts for the difference between

the slope b of the sample regression line and the slope 0 of the true regression line.

The latter difference is the slope ðy� � �yÞ=ðx� �xÞ and consequently the variance of

these slopes estimates the sampling variance of b.

We saw earlier in the discussion on the standard error of the regression

coefficient that the sampling variance of b is equal to the variance of Y for fixed

x divided by the sum of squares of x, that is, s2=
P ðx� �xÞ2. So, if we calculate

the sampling variance of b directly from our data and multiply it by
P ðx� �xÞ2

we will obtain an estimate of s2. This is exactly the same reasoning we used in

anova. We call this estimate the mean square due to regression and denote

it by s21.

Remember that we are weighting the data, so the weighted variance is the

product of
P ðy� � �yÞ2=ðx� �xÞ2, the sum of squared differences to the mean,

and the weight ðx� �xÞ2, divided by the sum of all weights. As the ðx� �xÞ2
cancel out, the expression becomes

P ðy� � �yÞ2=P ðx� �xÞ2.
The product of

P ðy� � �yÞ2=P ðx� �xÞ2 and
P ðx� �xÞ2 will give us the

value of s21, an estimate of s2 under H0 that is independent of s
2
T and s20. AsX

ðx� �xÞ2 �
X

ðy� � �yÞ2=
X

ðx� �xÞ2 ¼
X

ðy� � �yÞ2

we conclude that this new estimate of s2 is equal to the sum of squares of y�.

Now, if the null hypothesis is true, s21 and s20 estimate the same quantity. But

if the null hypothesis is false, the line will be steep and the points will lie near the

line, so the departures of y� from �y will be large and the departures of y from y�

will be small. In that case s21 will estimate a greater quantity than s20.

So now we can compare the two estimates of s2 by taking the ratio s21=s
2
0

and looking on the F distribution to see whether the observed variance ratio is

X 

Y y 

x x 

True  regression

Sample regression line

 line 

y 

 

y* 

Figure 9.9 Under H0 the variance of Y accounts for the difference (y� y�) and the

sampling variance of the regression coefficient b accounts for the difference ðy� � �yÞ.
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within the expected values when the null hypothesis is true. We have seen

before that the residual mean square had n� 2 degrees of freedom, losing

1 degree of freedom to each parameter, a and b, of the regression line because

in a dataset we may change all but the last two values in order to obtain a line

with a given slope and intercept. So we will use n� 2 degrees of freedom for

the denominator of the F distribution. For the numerator we will use 1 degree

of freedom because, as the line must pass through ð�x;�yÞ, its position will be

completely determined once we select one value for y�. Therefore, we will

refer to the F distribution with 1 and n� 2 degrees of freedom to test the null

hypothesis.

We can obtain the sum of squares due to regression from the regression

coefficient b. Actually, the product of b and the deviation of x about its mean,

bðx � �xÞ, will give us the difference of y� to the regression line, ðy� � �yÞ.
Therefore, the sum of squares due to regression

P ðy� � �yÞ2 is equal toP ½bðx� �xÞ�2, which in turn is equal to
P

b2ðx� �xÞ2. Since b is a constant, it

comes out of the summation sign and the expression becomes b2
P ðx� �xÞ2.

As
P ðx� �xÞ2 is the sum of squares of x, which can easily be obtained by the

product of the variance of x and its degrees of freedom, the sum of squares due

to regression is equal to b2� SSq(x).

In the example of the regression of FVC on height, we saw that b was

0.099, the residual mean square with 18 degrees of freedom was 0.269, and

SSq(x) was 570.95. The sum of squares due to regression is 0.0992� 570.95¼
5.596. The variance ratio is 5.596/0.269¼ 20.80. In the F distribution with

1 and 18 degrees of freedom, the 5% rejection boundary is 4.41 and, therefore,

we may reject the null hypothesis. The exact p-value is 0.0002.

The F-test in linear regression is perfectly equivalent to the t-test of the

regression coefficient. It tests the null hypothesis that the population regression

coefficient of the independent variable is zero. We can also think of the F-test

as a test of the null hypothesis that the coefficient of determination R2 is zero.

9.6 Interpretation of regression analysis results

We are now able to read and interpret the results of linear regression analysis.

We will use as illustration the output of a statistical package, in this case Stata.

Figure 9.10 shows the results of the regression analysis of FVC on height.

On the upper left is displayed the analysis of variance table, from which the

value of R2 and the F-test are obtained. In the first column is the sum of squares

(SS) due to regression (Model), the residual sum of squares (Residual), and the

total sum of squares (Total). The next column shows the number of degrees of

freedom (df) used to compute the mean squares (MS), that is, the estimates under

H0 of the variance of Y for each value of X.
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On the upper right is shown the number of observations (Number of obs), the
value of the F statistic with the number of degrees of freedom (F(1, 18)), and the

corresponding p-value (Prob > F).
Next is shown the value of R2 (R-squared) and, below, the value of the

adjusted R2 (Adj R-squared). We will see later what the adjusted R2 is.

In the last line of this group, Root MSE refers to the root mean square error.

This quantity is the square root of themean squared error. The mean squared error

is the average of the squared differences between the observed and predicted values.

Therefore, the MSE is similar to the residual mean square, the estimate of the

variance of Y for fixed x, but with the n divisor. Thus, the root mean square error is

the same to the MSE as the standard deviation is to the variance, and its units are the

same as those of the dependent variable. A root mean square error value of 0 means

that the estimate is perfect. The indicated value (0.517 81 liters) means that about

two-thirds of the values of Y are less than 0.517 81 liters from the value y� predicted
by the regression. Besides being a measure of the goodness of fit of the model,

along with R2 and the F-test, the root mean square error may be useful for the

comparison of two alternative models. The model with the lowest RMSE will have

greater predictive ability.

The table at the bottom of the figure presents, for the independent variable

(height) and the intercept (_cons), the value of the regression coefficients

(Coef.), the standard error of the coefficients (Std. Err.), the statistics of

the significance test of the coefficients (t), the corresponding p-values (P>jtj),
and the 95% confidence limits of the regression coefficients ([95% Conf.
interval]).

Therefore, the interpretation of the results of the linear regression of FVC

on height is as follows. The model is based on 20 observations. The F-test is

highly significant, meaning that height is associated with FVC, and we estimate

that about 50% of the variability of FVC is explained by the body height. The

model estimates that for each increase of 1 cm in height, the FVC increases

from 54 to 145mL. The evidence for this association is strong as indicated by

a p-value of less than 0.001.

Source |       SS       df       MS              Number of obs =      20 
-------------+------------------------------           F(  1,    18) =   20.94 

Model |  5.61420097     1  5.61420097           Prob > F      =  0.0002 
    Residual |  4.82625418    18  .268125232           R-squared     =  0.5377 
-------------+------------------------------           Adj R-squared =  0.5121 
       Total |  10.4404552    19   .54949764           Root MSE      =  .51781 

------------------------------------------------------------------------------ 
fvc |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 
height |   .0991619   .0216705     4.58   0.000     .0536338      .14469 

       _cons |  -12.92858    3.61975    -3.57   0.002    -20.53339   -5.323771 
------------------------------------------------------------------------------ 

Figure 9.10 Regression analysis of FVC on height.
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9.7 Multiple regression

The approach we have just discussed for the investigation of an association between

two interval variables can be extended to problems where we want to study the

relationship between one dependent variable Y and two independent variables X1

and X2. Try to visualize the variables arranged in a three-coordinate axis. Each

observation would be represented by a point in a three-dimensional space at the

intersection of the values of three variables. The association between the two

explanatory variables and the dependent variable would also be modeled by

a regression line passing through the middle of all the points, now in a

three-dimensional space. The equation of the regression line would then be

y�¼ aþ b1x1þ b2x2.

By the same token, we can extend this approach to more than two explanatory

variables. There is nothing to prevent us from thinking of a space with as many

dimensions as the number of explanatory variables (plus one for the dependent

variable) and a cloud of points in this space being crossed by a line passing through

the middle of all these points.

This is the concept of multiple regression, a technique called multivariate

analysis because it allows the creation of statistical models with multiple variables

simultaneously. This model has as its main objective the explanation of the

variability of a dependent variable and the prediction of its values through a linear

combination of independent variables x1, x2, . . . , xn in the form of y¼ aþ b1x1þ
b2x2þ � � � þ bnxn.

As we will see, multiple regression has extensive application in clinical

research. The principles of the method are exactly the same as were discussed for

the case of simple regression, of which multiple regression is just a generalization.

Thus, the regression coefficients, in this context called partial regression

coefficients, are also the point estimates of the difference in mean values of the

dependent variable between two consecutive values of the independent variable, but

now at constant value of the other independent variables in the model. Standard

errors and confidence intervals for each of the coefficients can be determined and

each coefficient can be tested against the null hypothesis that its true value is zero. If

the regression coefficient of an independent variable is not statistically different

from zero, this means that the variable does not contribute to the explanation or

prediction of the dependent variable and can be removed from the model without

affecting the prediction.

The interpretation of the coefficient of determination R2, here called coefficient

of multiple determination, is also identical. However, it must be taken into

account that the value of R2 increases with the number of variables in the model.

Therefore, if more variables are added to the model, even if they make no con-

tribution whatsoever to the prediction of the dependent variable, the value of R2

will always increase. The adjusted R2 is a correction of the coefficient of multi-

ple determination, taking into account the number of independent variables on the

model and, as such, should be the value of R2 to be considered and reported.
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A few remarks must be made about the F-test applied to multiple regression

regarding the calculation of the degrees of freedom. For the residual mean square,

the number of degrees of freedom is the number of observations minus 1 degree of

freedom for each term in the regression equation, including the intercept. For the

mean square due to regression, because we need one value y� for each dimension to

define the position of the regression line in the multi-dimensional space, the number

of degrees of freedom is the number of terms in the equation excluding the intercept.

The F-test in multiple regression is still a test of the null hypothesis that R2¼ 0.

Therefore, it is a test of the null hypothesis that all partial regression coefficients are

zero in the population and, thus, it is basically a global significance test of the

regression model.

One of the main uses of multiple regression is, of course, for finding the

variables that explain the behavior of a particular attribute. For example, in the

investigation of FVC discussed above we found an association between FVC and

body height and estimated that FVC increases by about 100mL per centimeter

increase in height. Suppose we now want to investigate whether there is also an

association between FVC and gender. So we run a regression of FVC on gender,

coded 0 for females and 1 for males (yes, the independent variables in the

regression can be binary, but not the dependent variable). The regression coefficient

of gender, 0.865, is significantly different from zero (p¼ 0.007). The adjusted R2 is

0.34. Therefore, we conclude that gender is associated to FVC, explaining about

34% of its variability, and we estimate that the mean FVC in men is 0.865 liters

greater than the mean FVC in women.

However, we know that men are on average taller than women. Therefore, there

is a possibility that the difference on average FVC between genders is due solely to

the difference of heights and not actually related to the gender of individuals.

Multiple regression allows us to clarify the relationships among these variables.

Figure 9.11 shows the results of a multiple regression analysis of FVC on both

gender and height.

      Source |       SS       df       MS              Number of obs =      20 
-------------+------------------------------           F(  2,    17) =   10.07 
       Model |  5.66223037     2  2.83111519           Prob > F      =  0.0013 
    Residual |  4.77822478    17  .281072046           R-squared     =  0.5423 
-------------+------------------------------           Adj R-squared =  0.4885 
       Total |  10.4404552    19   .54949764           Root MSE      =  .53016 

------------------------------------------------------------------------------ 
fvc |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 
 male gender |    .148079    .358219     0.41   0.684    -.6076971    .9038551 
      height |   .0891508   .0328451     2.71   0.015     .0198538    .1584479 
       _cons |  -11.34607   5.328305    -2.13   0.048    -22.58782   -.1043324 
------------------------------------------------------------------------------ 

Figure 9.11 Multiple regression analysis of FVC on gender adjusted for height to

control for confounding.
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From the results we conclude that FVC is associated with height (p¼ 0.015) but

not with gender (p¼ 0.684) when height is taken into account. In other words, we

have no evidence that mean FVC is different between men and women with the

same height. We therefore conclude that the relationship between gender and FVC

may be spurious and apparently due only to the association between gender and

height. If we know the height of a person, knowing the gender does not allow us to

make a better prediction of the value of FVC.

The effect of gender and height on FVC is therefore confounded. Confounding

occurs whenever an external, often unrecognized and therefore unobserved,

variable is associated with both the dependent and independent variables. In this

example, height was the confounder and, had we not entered height into the model,

we would have erroneously concluded that men had on average greater lung

volumes, just because they were men.

Confounding is a terrible nuisance in clinical research because every time an

association is discovered between two variables there is always the possibility that

the association is spurious and due to a hidden confounder. This is the reason why it

is so hard to establish causality in observational research. The corollary is that, in

virtually any investigation of an association between variables in an analytical

study, one needs to consider all the potential confounders and should include them

in a multiple regression analysis.

The ever-present possibility of confounding and the need to control for

confounders is what makes multivariate methods so important in biostatistics. It

is also the reason why the simple statistical tests for comparison of means and

proportions described in the previous chapters have little application in analytical

research and are usually reserved for experimental studies. This applies to

unadjusted confidence intervals as well. However, as we will see, because

experimental research is also not immune to confounding, multivariate methods

have great importance in those studies.

Besides controlling for confounders, the other major use of multiple regression

is in the investigation of variables that are associated and explain the dependent

variable in order to develop explanatory or predictive models of a variable of

interest.

If we look at the example in Figure 9.12 we will see that a new variable, age, has

been added to the model. The F-test is highly significant (p<0.0001) meaning that at

least one independent variable is associated with FVC. The tests of the partial

regression coefficients of height and age are both significant, so we conclude that both

variables are associated with FVC. According to the model, mean FVC decreases

about 38mL (18 to 58mL) for each year of life, at constant value of height. In turn,

among people of the same age, mean FVC increases by 100mL (67 to 134mL) for

each centimeter increase in body height. The value of the adjusted R2 increased to

74% and the root mean square error decreased from 0.53 to 0.38, as expected, since

we have improved the predictive ability of the model. Therefore, we have identified a

second variable that, together with height, explains almost 75% of FVC.

Naturally, these results based on a sample of only 20 subjects may not be very

robust. In addition, we have not verified whether the assumptions of multiple
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regression were true. Multiple regression is, without doubt, a very powerful

technique of data analysis but, on the other hand, relies on a significant number of

assumptions. We will now review those assumptions and discuss how we can check

that at least the most important ones were not violated.

9.8 Regression diagnostics

We saw earlier that the determination of the standard error of the regression

coefficient was based on the assumptions of a normal distribution and of homo-

scedasticity of the dependent variable in all combinations of values of the in-

dependent variables.

In addition, for the values of partial regression coefficients to make sense, that

is, they actually estimate the change in the value of the dependent variable for a unit

change in the value of each independent variable, it is necessary for the relationship

between the dependent and each independent variable to be linear because only then

will the change in the dependent variable be constant across all values of the

independent variable.

For estimating the standard errors of the partial regression coefficients and for

several statistical tests of multiple regression, the assumption of normality of the

independent variables has also been made. The independent variables may be

random as well as controlled; that is, the investigator may elect to collect data from

fixed values of an independent variable, but their distributions must be normal.

It is not possible to verify the validity of several of these assumptions since, in

practice, for each combination of values of the independent variables we usually

have only a single observation. This makes it impossible to confirm the normal

distribution and the equal variance of the dependent variable for each combination

of the values of the independent variables.

However, if the above assumptions are true, the residuals should have a normal

distribution, zero mean, and should not be correlated with the values of the

independent variables. Verification of the regression assumptions can thus be made

indirectly by the analysis of residuals.

      Source |       SS       df       MS              Number of obs =      20 
-------------+------------------------------           F(  2,    17) =   27.56 
       Model |  7.97936972     2  3.98968486           Prob > F      =  0.0000 
    Residual |  2.46108544    17  .144769732           R-squared     =  0.7643 
-------------+------------------------------           Adj R-squared =  0.7365 
       Total |  10.4404552    19   .54949764           Root MSE      =  .38049 

------------------------------------------------------------------------------ 
fvc |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 
      height |   .1003373   .0159262     6.30   0.000      .066736    .1339387 
         age |  -.0380223   .0094069    -4.04   0.001    -.0578692   -.0181755 
       _cons |   -11.0469   2.700231    -4.09   0.001    -16.74388   -5.349905 
------------------------------------------------------------------------------ 

Figure 9.12 Multiple regression analysis of FVC on two predictors.
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An essential tool for the analysis of residuals is the residual plot. This is a

scatterplot of the residuals on the vertical axis with the predicted value of the

dependent variable on the horizontal axis. Figure 9.13 shows the residual plot of

the regression of FVC on height and age of the previous section.

Visual inspection of the graph reveals several indications about the possibility of

violation of the assumptions of regression and may help in the identification of

specific problems with the data, as is illustrated in Figure 9.14.

In a residual plot no discernible pattern should be observed (Figure 9.14a). If the

points are more to one side of the horizontal line that corresponds to the value 0 of

the residuals, this means that the distribution of residuals is not normal

(Figure 9.14b). If the spread of the residuals is not constant over the predicted

values and increases for smaller or larger values of the prediction, or both, this is an

indication of heteroscedasticity (Figure 9.14c). A transformation of the dependent

variable (e.g., a logarithmic transformation) may correct these two problems. If the

residuals are larger in the region near the center of the chart and decrease to each

side (Figure 9.14d), this means that the relationship between the dependent variable

and one or more independent variables is not adequately represented by a straight

line. The residual plot of Figure 9.13 does not present any of these problems.

For the verification of the assumption of linearity one can inspect a scatterplot of

the dependent variable with each of the independent variables.

Besides residual plots, there are several statistical tests available that help us

identify violations of the assumptions. For example, to test the hypothesis of zero

mean of the residuals we can use Student’s t-test to compare the mean of the

distribution of residuals to the theoretical value 0. Examples of other tests available

for identifying violations of the assumptions of multiple regression are the Shapiro–

Wilk test of the normality of the residuals, the Cook–Weisberg test of hetero-

scedasticity, and the Ramsey RESET test of linearity

Another useful analysis is DfBeta, which helps in the identification of outliers

that exert a great influence, called leverage, on the estimates of the regression
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Figure 9.13 Residual plot of the regression of FVC on height and age.
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coefficients. Figure 9.15 illustrates the effect of an outlier on the estimation of the

regression coefficient. In this example, there is obviously no correlation between the

two variables, but because of an extreme value the least squares regression line has

a significant slope. DfBeta is a measure of the change in regression coefficients

when each observation is removed in turn from the data. If there are outliers the

regression coefficients will change markedly.

The least squares method is fairly tolerant to some deviations from the

assumptions, such as non-normality of the variables in the model (especially in

large sample sizes) and heteroscedasticity of the dependent variable, but is

markedly sensitive to extreme values. However, this does not mean that any suspect

outlier should be excluded from the analysis, because it could lead to the truncation
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Figure 9.14 Patterns in residual plots suggestive of non-normality of the residuals

(b), heteroscedasticity (c), and nonlinearity (d).
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of the dependent variable. Instead, outliers should be reviewed and excluded only if

there is evidence that they result from an error in the data that cannot be corrected.

Although in regression analysis the variables in the model are usually

interpreted as independent predictors of the explained variable, the method does not

select predictors based on their mutual independence. Rather, the independence of

the predictors is an assumption of the model and, as such, it is the responsibility of

the investigator to select variables for the model that are mutually independent, as

well as to verify this assumption. Correlated predicted variables have an impact on

the estimation of the regression coefficients and their standard errors, which will

decrease the predictive ability of the model to a degree that cannot be assessed.

In practice, though, some degree of correlation between the variables in the

model virtually always exists and that can be tolerated. However, the model does

not tolerate perfect or importantmulticollinearity.

Perfect multicollinearity exists when the value of one independent variable is fully

determined by the value of another independent variable or by a set of independent

variables. When perfect or important collinearity is present, the slope of the regression

line will vary erratically from one sample to another and therefore the standard errors

of the coefficients will be so wide that showing an association will be unlikely.

Finally, it is important to mention other assumptions of multiple regression

which are related to the study design. First, the data has to come from a random

sample and the observations must be independent. Second, the dependent variable

cannot be limited (allowed to vary only between certain values), censored (values

below a certain lower limit, or above a certain upper limit, are given the same

value), or truncated (values below or above a certain limit, or both, are excluded).

We will discuss additional restrictions on multiple regression later in this book, but

for now let us review the assumptions of multiple regression:

� The dependent variable has a normal distribution.

� Thevariance of the dependent variable is the same for all combinations of values

of the independent variables (homoscedasticity).
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Figure 9.15 Influence of an outlier (open circle) in the regression estimates.

Without the outlier the slope of the regression line would be nearly zero (gray line).
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� The dependent variable cannot be limited, censored, or truncated.

� The independent variables are either binary attributes or interval attributes with

a normal distribution.

� The independent variables may be random or controlled.

� The independent variables must not be correlated.

� There can be no important or perfect multicollinearity.

� The relationship between the dependent variable and each independent variable

must be linear.

9.9 Selection of predictor variables

Two other assumptions of multiple regression that have not yet been mentioned

are, first, that the model should not contain unnecessary variables and, second, that

all important variables are in the model. These assumptions mean that the selection

of variables to be included in the model requires common sense and domain

knowledge.

If we include in the model several variables that are not associated with the

dependent variable, the model will try to fit to all independent variables, leading to a

decrease in the influence of variables truly associated with the dependent variable

and to the distribution of their influence by the redundant variables. In addition to

obtaining inaccurate estimates of regression coefficients and increasing the type II

error, this process will result in an excessive adjustment to the sample data, a

problem called overfitting. The consequence of overfitting is a loss of reliability of

the model, which results in a considerable increase in the error of the predicted

value of the dependent variable (and consequent decrease of R2), when the same

model is applied to a different sample of the same population.

On the other hand, if important independent variables are omitted, their effect

on the dependent variable will be distributed by other variables in the model,

biasing their coefficients and possibly assigning significance to variables that are

associated with the omitted variables but not with the dependent variable, thus

increasing the type I error. As seen in the example on FVC, the omission of height

in a regression model that included gender led to the erroneous conclusion that there

was an association between gender and FVC.

As a consequence of the assumptions referred to above, during the

specification of a multiple regression model designed to explain the behavior

of a particular attribute, all decisions regarding the inclusion or exclusion of

variables should be duly weighed and justifiable. The model must include all

variables that are known to be associated with the dependent variable, even if

their regression coefficients are not, in the sample, significantly different from

zero. On the other hand, the model should include only those variables for

which there is a theoretical explanation for an eventual association with the

dependent variable.
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After the set of candidate predictors of the dependent variable are selected and

we run a computer program for multiple regression, we will typically find that the

coefficients of some of the variables included in the model are not statistically

different from zero. Of these, the variables that we know to be associated with the

dependent variable should nevertheless stay in the model. For the remainder, as

their coefficients are not significant, we should be able to delete them from the

model without affecting the quality of the adjustment.

This is not always the case, though. In many models there are associations

between independent variables, that is, there is multicollinearity among a group of

predictors. As a result, the elimination of one variable can affect the coefficients of

others, to the extent that a non-significant variable may become significant upon

elimination of a highly correlated variable. Or, the other way around, the

elimination of one variable may change one or more coefficients from significant to

non-significant.

For this reason, the elimination of variables with non-significant coefficients

after a regression must be done one variable at a time. There are two main

approaches to this procedure. One is to run the regression with all variables, then

remove the variable whose coefficient has the highest p-value, and run the

regression again with the remaining variables. The procedure is repeated until all

the regression coefficients are significant. This procedure can be performed

manually or automatically by some statistical analysis programs.

In the other approach, called stepwise regression, the selection is automatic

and is based on an algorithm. Different programs may use different algorithms,

so results may vary, but the general principle is the same. In the backward

elimination method the fit of the current model is compared to the fit of the

various models obtained by removing one variable at a time, thereby identifying

the variables that can be removed without significantly influencing the fit of

the model. In the forward elimination method, the algorithm starts with the

null model, that is, the model that contains only the constant, and in each step

includes the variable that contributes the most for the fit of the model. With

both methods, the elimination or inclusion of variables in the model stops when

a certain criterion is reached. Some algorithms combine the two methods,

evaluating at each step which variables should be removed and which should be

included.

Some stepwise regression programs allow the specification of variables that

have to be in the final model and cannot be removed, while others treat all variables

equally. Because of the lack of control of the investigator on the process of selection

of variables, stepwise regression is mainly used in problems where there are a large

number of independent variables and no underlying theory guiding the selection of

variables. Examples of such problems are the development of purely predictive

models in which the goal of accurately predicting the dependent variable largely

outweighs the explanation of the direction and magnitude of the associations.

Therefore, most often the selection of variables after a regression is done by manual

selection with the method described above.
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9.10 Regression, t-test, and anova

We saw earlier that it is allowed to have binary independent variables in regression.

As any coefficient represents the difference between the average values of the

dependent variable between two consecutive values of the independent variable, if

a binary attribute is encoded by two consecutive numbers (typically 0 and 1), its

coefficient can be interpreted as the point estimate of the difference in the

population means of the dependent variable between the groups defined by values

of the attribute. The confidence interval of the coefficient therefore represents the

95% confidence interval of the difference between the population mean values of

the dependent variable. And the test of significance of the coefficient is equivalent

to a test of the null hypothesis of equality of means. Everything is completely

analogous to what we discussed earlier on the estimation of differences between

population means and Student’s t-test. Even the assumptions of normality and

homoscedasticity are identical.

Actually, Student’s t-test for two independent samples can be replaced by linear

regression, with fully coincident results. Regression, however, has the additional

advantage of allowing us to adjust the analysis for external variables and thereby

correct statistically any differences between the groups in the distribution of those

external variables.

Multiple regression can also compare the means of more than two groups and

thus replace anova. This procedure is a little more complicated and requires some

explanation.

If we want to compare the means of the dependent variable between, say, four

groups, we cannot simply create a categorical variable that encodes the groups

with the values 1, 2, 3, and 4, and run the regression of the dependent variable on

this variable. The regression does not differentiate between nominal variables with

three or more categories and interval variables, and therefore would assume

erroneously that the classes of the categorical variable represent increasing and

equally spaced values.

Therefore, the only possibility is to convert the categorical variable into several

binary variables. For example, suppose we wanted to investigate an association

between FVC and education and we considered education to be a categorical

attribute with values elementary, secondary, middle, and higher corresponding to

the highest education level attained by an individual. We could replace this

categorical attribute by four binary variables called Elementary, Secondary, Middle,

and Higher, each variable taking the value 1 if an individual belongs to that group

and 0 otherwise. These variables that exist only to allow an analysis are called

dummy variables.

We cannot, however, have a regression model of FVC on those four variables

because we would violate one of the conditions of application of multiple regres-

sion, namely, the absence of important or perfect multicollinearity. In multiple

regression it is not allowed for an independent variable to be completely determined

by another or a group of other independent variables. However, this would happen

if we were to include the four variables in the model. For example, if we know
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that the variables Elementary, Secondary, and Middle are all 0 in a given individual,

then we immediately know that the value of the variable Higher must be 1. The

value of each dummy variable is therefore fully determined by the values of the

other three, in clear violation of the assumption of no perfect multicollinearity.

The solution is simply to omit one of the dummy variables. Then, knowledge of

the value of three of them does not necessarily tell us the value of the fourth, yet the

group to which each observation belongs will remain perfectly encoded.

Let us first check whether three dummies are sufficient to encode the four

categories. For example, say we omit the variable Elementary. Then, an individual

belongs to the group where the value of the corresponding dummy variable is 1 and

to the Elementary group if the values of all three dummy variables are 0. Therefore,

a nominal variable with n categories can indeed be encoded by n� 1 dummies.

Let us now check whether we remove collinearity, again omitting one of the

dummies, say Elementary. For example, if Secondary and Middle have the value 0

the value of Higher may be 1, if the group to which the individual belongs is Higher,

or 0 if the individual belongs to the Elementary group. Therefore, the value of a

dummy is no longer fully determined by the values of the other three.

This encoding method of nominal variables is called binary encoding or

encoding by reference. The omitted category becomes the reference category,

because the partial regression coefficients of the remaining dummy variables will

estimate the difference of the average value of the dependent variable between each

of the dummy variables and the reference category. Figure 9.16 shows the result of

regression analysis of FVC on the set of dummies encoding the attribute Education.

The regression coefficient of the constant (intercept) is the mean FVC in the

group Elementary. The coefficients of each dummy variable are the point estimates

of the difference in mean FVC between the group defined by a dummy and the

reference category. The significance tests of the regression coefficients of the

dummy variables also test only the difference in the mean of the dependent variable

between each dummy and the reference category. In other words, the analysis

Source |       SS       df       MS              Number of obs =    5226 
-------------+------------------------------           F(  3,  5222) =    2.09 

Model |  4.92595667     3  1.64198556           Prob > F      =  0.0991 
   Residual |  4099.02104  5222  .784952325           R-squared     =  0.0012 

-------------+------------------------------           Adj R-squared =  0.0006 
      Total |    4103.947  5225  .785444402           Root MSE      =  .88598 

------------------------------------------------------------------------------ 
fvc |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 
secondary |   .0214739   .0266201     0.81   0.420    -.0307125    .0736603 

middle |   .1242445   .0574457     2.16   0.031     .0116268    .2368621 
higher |    .069435   .0442156     1.57   0.116    -.0172461    .1561162 
_cons |   3.860886   .0195441   197.55   0.000     3.822571      3.8992 

------------------------------------------------------------------------------ 

Figure 9.16 Results of the regression of FVC on three dummy variables encoding

a nominal variable with four categories.
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results do not give us an unequivocal answer to the question of whether FVC is

associated with education.

In order to get the answer, it is necessary to test globally the set of dummy

variables that encode a categorical variable. This amounts to saying that we

want to test the null hypothesis that the coefficients of the dummies encoding a

categorical attribute are all equal to 0. The F-test of multiple regression tests

precisely this hypothesis, and this is the test that must be considered if the

dummies are the only explanatory variables in the model. In the example, the p-

value of the F-test is 0.099 and, therefore, we do not conclude on an association

between FVC and education. If a model includes additional independent

variables the test is more complicated, but generally available in statistical

analysis programs.

Thus, we have seen how to include nominal variables in multiple regression

models and that anova can be replaced by multiple regression. The results of the

two methods are absolutely equivalent.

9.11 Interaction

Imagine now that we continue our study of respiratory function parameters and

intend to investigate the relationship between the peak expiratory flow rate (PEF)

and gender. In a quick analysis, we find that the average value of PEF is

significantly higher in men (580 liters/minute with standard deviation 55 liters/

minute) than in women (486 liters/minute with standard deviation 72 liters/minute).

However, we must take into account the average difference in height between

genders, as men are about 12 cm taller than women. If PEF is related to height, then

the difference in the mean PEF between genders is perhaps attributable solely to the

difference in heights.

To clarify the issue, we do a multiple regression analysis of PEF on gender and

height, the results of which are shown in Figure 9.17.

The results are clear: the model is statistically significant by the F-test

(p < 0.0001) and the two attributes explain 53% of the variance of PEF. According

Source |       SS       df       MS                  Number of obs =     116   
------------+------------------------------               F(  2,   113) =   64.68   

Model |  390373.892     2  195186.946               Prob > F      =  0.0000   
   Residual |  340985.936   113  3017.57465               R-squared     =  0.5338   
------------+------------------------------               Adj R-squared =  0.5255   
      Total |  731359.828   115  6359.65067               Root MSE      =  54.932   

---------------------------------------------------------------------------------   
        PEF |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]   
------------+--------------------------------------------------------------------   
male gender |   43.85963   12.62565      3.474   0.001       18.84594    68.87331   

height |   4.117939   .6115718      6.733   0.000       2.906306    5.329573   
      _cons |  -203.0461   102.5968     -1.979   0.050      -406.3089    .2167124   
---------------------------------------------------------------------------------    

Figure 9.17 Results of the regression of PEF on gender and height.
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to the partial regression coefficients, keeping the height constant the PEF is on

average 44 liters/minute higher in men than in women (p¼ 0.001) and, in the same

gender, PEF increases by 4 liters/minute for every centimeter increase in height

(p< 0.001).

However, in a scatterplot of the values of PEF differentiating the two genders

we obtained the result shown in Figure 9.18. In the graph we have also drawn

separate regression lines for men and women.

The data is not in agreement with the results of the analysis. We can see that

PEF increases more in women than in men for every centimeter of height, so that in

women more than 185 cm tall the PEF is on average greater than in men. Thus, the

data contradicts the model, which predicted that PEF was always higher in men

regardless of height.

The model is wrong because the relationship between PEF and height is not the

same in both genders and, conversely, the relationship between PEF and gender is

not the same for all heights. This situation is called interaction between two

variables: that is, the effect of an explanatory variable on the dependent variable is

not the same for all values of another explanatory variable. When there is

interaction, the model is not simply additive – for assessing the effect of a variable

on the dependent variable it is necessary to take into account the value of the other

variable in the interaction.

To properly analyze this data, we need to represent the interaction between

gender and height in the model. For this purpose, a term for the interaction is

included in the model, whose value is the product of the two variables. The results

of the multiple regression model with interaction are shown in Figure 9.19.

The term for the interaction is statistically significant (p¼ 0.001). The regres-

sion equation is PEF¼� 447þ 5.6� heightþ 802� gender� 4.3� height� gender.
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Figure 9.18 Scatterplot of the data of the regression of PEF on gender and height

with regression lines fitted separately for women (black) and for men (gray).
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Gender is coded female¼ 0 and male¼ 1. Notice the value of the regression

coefficient of gender, which is now 802 liters/minute. Clearly, this coefficient no

longer represents the difference in mean PEF between the two genres – now it is

necessary to take the height into account.

The interpretation of models with interaction is always more complicated,

especially if there are two or more pairs of interacting variables or if the interaction

involves three variables (called second-order interactions) or more. If one of the

variables in the interaction is binary, one way of interpreting the model is to run

regressions of the dependent on the interval variable separately for each value of the

binary variable, as illustrated in Figure 9.18.

Another possibility consists of solving the regression equation for each value of

the binary variable in the interaction. The regression equation with a first-order

interaction and the main effects is y¼ aþ b1x1þ b2x2þ b3x1x2. Therefore, if

x2 is the binary variable coded (0, 1), when its value is 0 the equation becomes

y¼ aþ b1x1 and y increases by b1 for each unit increase in x1. When its value

is 1, the equation becomes y¼ aþ (b1þ b3)x1þ b2 and y increases by b1þ b3
for each unit increase in x1.

Accordingly, in the example the increase in PEF for each centimeter

increase in height is 5.6 L/min in women and 1.3 L/min in men.

When the two variables in the interaction are continuous, it is often too

complicated to understand the nature of the relationship between them and the

dependent variable. In such cases it may be preferable to dichotomize one of the

interacting variables and do separate regressions.

Although a model with interaction is more difficult to interpret, interactions

often provide interesting information about the dynamics of the relationships

between variables. Figure 9.20 shows how the relationship between PEF, height,

and gender would look without interaction (top) and with interaction (bottom) in

Source |       SS       df       MS                  Number of obs =     116   
-------------+------------------------------               F(  3,   112) =   51.53   

Model |  424110.143     3  141370.048               Prob > F      =  0.0000    
    Residual |  307249.685   112  2743.30076               R-squared     =  0.5799   
-------------+------------------------------               Adj R-squared =  0.5686   
       Total |  731359.828   115  6359.65067               Root MSE      =  52.377   

---------------------------------------------------------------------------------   
         PEF |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]   
-------------+--------------------------------------------------------------------   
 male gender |   802.1632   216.5725      3.704   0.000       373.0525    1231.274   

height |   5.578493   .7165818      7.785   0.000       4.158678    6.998308   
interaction |  -4.323519   1.232894     -3.507   0.001      -6.766341   -1.880698   
       _cons |  -447.5004   120.1193     -3.725   0.000      -685.5014   -209.4994   
---------------------------------------------------------------------------------- 

Figure 9.19 Results of the regression of PEF on gender and height with a term

for the gender by height interaction.
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different settings where an association existed between the dependent variable and

one interacting variable only, or with the two interacting variables.

As illustrated in this figure, the possibility of including terms to model

interactions allows the evaluation of a much greater variety of relationships between

the dependent variable and independent variables.

In addition, the existence of an interaction is sometimes the analysis of primary

interest, such as when one wants to compare differences in means between two

populations. For example, suppose we wanted to investigate whether the difference

in mean PEF between genders is the same in smokers and non-smokers. The correct

analysis would be to test the coefficient of the interaction of gender with smoker.

The analysis of interactions is also the method by which one may test the

equality of the slopes of two regression lines, a problem encountered with some

frequency in basic research, but only very occasionally in clinical research. As

illustrated in Figure 9.20, the two lines are parallel only when the interaction is non-

significant.

9.12 Nonlinear regression

Sometimes the change in the dependent variable is not constant over the range

of values of the independent variable, that is, the relationship between the two is

nonlinear. For example, it may happen that the dependent variable increases in the
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Figure 9.20 Exemplification of an interaction effect on the relationship of two

variables with one dependent variable. Each graph indicates which of the

explanatory variables is significantly associated with the dependent variable.

STATISTICAL MODELING 199



same direction as the independent variable up to a certain value, showing thereafter

a tendency to decrease rather than increase. An example is the daily production of

growth hormone, which increases with age until puberty and gradually decreases

from then on. The relationship between growth hormone and age is not linear;

rather, it has the shape of a curve.

This relationship can be modeled by including a new term in the regression, the

square of the independent variable. Such a term is called a quadratic term. The

regression equation will have the form y¼ aþ b1xþ b2x
2, hence its name of

polynomial regression or curvilinear regression. The regression equation is no

longer the equation of a straight line, but the equation of a parabola. Figure 9.21

illustrates the models obtained with the regression of FVC on age, adjusting for

height (top), and introducing the quadratic term age-squared (bottom).

To interpret the relationship between the two variables, it is useful to estimate

the value of the independent variable at the inflection of the curve. This value

corresponds to the vertex of the parabola y¼ aþ b1xþ b2x
2 and is given by

�b1/2b2. In Figure 9.21, the inflection point is thus �0.019 58/(�0.0004� 2),

or 24.5. According to the model, FVC increases with age until about the age of

24 years and then decreases, evermore rapidly as age increases.

The usual technique for evaluating a curvilinear regression is to enter a

quadratic term into the model and test its coefficient for significance. If the term is

non-significant then there is no evidence of a curvilinear relationship and the

------------------------ 
  FVC  |   Coef.   P>|t|      
-------+---------------- 
height |  .06724   0.000 
   age |  -.0251   0.000 
 _cons |  -6.065   0.000 
------------------------ 

------------------------ 
  FVC  |   Coef.   P>|t|      
-----+------------------ 
height |  .06768   0.000 
   age |  .01958   0.017 
  age2 |  -.0004   0.000 
 _cons |  -7.245   0.000 
------------------------ 
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Figure 9.21 Comparison of models obtained by linear regression (top) and by

polynomial regression (bottom).
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quadratic term is dropped from the model. Otherwise, the term is kept in the model

and the independent attribute will be represented by the two variables.

9.13 Logistic regression

We saw above that multiple regression allowed binary attributes as independent

variables, but that the dependent variable had to be interval. The explanation for this

is illustrated in Figure 9.22, which shows a scatterplot of the relationship between a

binary variable (gender, coded female¼ 0, male¼ 1) and an interval variable (body

height). The points on the graph represent the proportion of males in each value of

height from a random sample of about 1900 individuals, as well as the regression

line estimated by the least squares method.

The result is clearly unsatisfactory. The straight line does not fit the points well,

which are distributed in the form of an S-shaped curve. The residuals are almost all

negative on the left half of the regression line and nearly all positive on the right

half and, therefore, their distribution is certainly not normal. Moreover, the

distribution of the proportion p of men is binomial, not normal as assumed by the

least squares method, and being binomial its variance p(1� p) depends on the value

of proportion and cannot therefore be equal for all values of height. In addition, the

dependent variable can take values only between 0 and 1, violating the assumption

that the dependent variable is not limited.

In summary, the application of linear regression to the case of a dependent

binary variable leads to the violation of many assumptions of the least squares

method and thus the estimates of the regression coefficients are not valid. Another
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Figure 9.22 Illustration of the problems of fitting a least squares line when the

dependent variable is binary.
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important problem is that, according to the equation of the linear model in

Figure 9.22, for heights exceeding 182 cm the predicted proportion of men exceeds

100%, which is an impossibility.

To solve these problems we need to find a transformation of the dependent

variable such that the dependent variable can have a linear relationship with the

independent variables and will no longer be limited to vary between 0 and 1.

We saw in Section 5.9 that the logit transformation satisfies these requirements.

Recall that if p is a probability, then p/(1� p) are the odds and ln(p/1� p) is the log-

odds or logit, that is, the natural logarithm of the odds. When p has the value 0, the odds

are 0 and the logit is�1. When p has the value 1, the odds areþ1 and the logit isþ1.

Consider now Figure 9.23, which shows the regression line of gender on height

after the logit transformation of the dependent variable.

The result is clearly superior to the previous one, as the fit of the regression line

to the data is much better. The equation of that regression line is, therefore,

ln
p

1� p

� �
¼ aþ bx

Naturally, we can extend this principle to multiple dimensions defined by so many

independent variables, resulting in a model with the general form

ln
p

1� p

� �
¼ aþ b1x1 þ b2x2 þ � � � þ bnxn

In words, this expression says that the probability of a binary attribute, expressed as

logit, is modeled by the linear combination of a set of independent variables.
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Figure 9.23 The least squares line fitted to the data of Figure 9.22 but with the

logit transformation of the dependent variable.
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As we usually prefer to think in terms of proportions or probabilities rather

then logits, we can transform the values predicted by the equation into proportions.

As ln(p/1� p)¼ logit(p), after exponentiation and solving for p the regression

equation becomes

p ¼ eaþbx

1þ eaþbx

In this expression, e is the base of natural logarithms (approximately 2.72).

There is no complex mathematics involved in obtaining the above equation.

The equation of the regression line is

ln
p

1� p

� �
¼ aþ bx

which by exponentiation becomes

p=ð1� pÞ ¼ expðaþ bxÞ
Then we remove the fraction

p ¼ ð1� pÞexpðaþ bxÞ
and collect together terms in p

p ¼ expðaþ bxÞ � p� expðaþ bxÞ
pþ p� expðaþ bxÞ ¼ expðaþ bxÞ
p½1þ expðaþ bxÞ� ¼ expðaþ bxÞ

to get the regression equation

p ¼ expðaþ bxÞ
1þ expðaþ bxÞ

The result of this transformation is shown in Figure 9.24, with an obvious im-

provement in the interpretation of the model. We might, for example, estimate that

among individuals with a height of 170 cm, about 90% are male or, equivalently,

that the probability of an individual of 170 cm being a male is about 90%.

This is the logistic regression model, one of the most important analytical

methods in clinical research. The affinities of this method with linear regression are

manifold, as we have just seen, but some problems still persist. That is, for some

values of height, there was only one individual in the sample and in these cases the

proportion of men could only be 0 or 1, with corresponding logit values �1 or

þ1. Of course, no least squares line could possibly predict such values. This effect

is clearly noted at the most extreme values of the independent variable, typically

those where there are fewer observations. Consequently, these observations have

vanished from the graphs of Figures 9.23 and 9.24.
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Therefore, the equation of the regression line cannot be obtained with the least

squares method. Fortunately, there is an alternative approach for obtaining this

equation, the method of maximum likelihood.

9.14 The method of maximum likelihood

We will begin the discussion of the method of maximum likelihood with a simple

problem of estimation. Suppose we wanted to estimate, in a given population, the

proportion of individuals with a certain binary attribute. To this end, we obtained a

random sample of 50 individuals of this population, in which we observed the

presence of this attribute in 30 of them.

As the attribute is binary, we know that the sample proportion p is from a

binomial distribution and we want to estimate the mean of this distribution, which is

equal to the proportion p with the attribute in the population. Now, the likelihood of

the result we obtained in our sample depends on the proportion p with the attribute

in the population. For example, if p were 50%, the probability P of observing 30

subjects with the attribute in a sample of 50 is 4.19%, and if p were 75% the

probability P is 0.77%. We obtained the probabilities P from the formula of the

binomial distribution.

Thus, we can compute the probability P of observing 30 individuals with the

attribute in a sample of 50 for different assumptions about the population proportion

p. We can calculate P in a systematic manner, starting at a value for p of 0% and

going up to 100% in intervals of, say 1 percentage point. If we display on a graph

the probability P of the result we obtained by sampling for each hypothetical value
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Figure 9.24 Transformation of the dependent variable back into proportions

after fitting a least squares line to the data of Figure 9.23.
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of the population proportion p, we will get the result shown in Figure 9.25. In the

graph we can see that the probability P of observing 30 individuals with

the attribute in a sample of 50 is maximum (about 11.5%) if p, the proportion of the

population with the attribute, is 60%.

The probability P of the data observed in the sample is a probability

conditional on a given value for the probability p of the attribute. To

distinguish the former from the latter probability, the former is given the name

of likelihood and the curve relating the likelihood with the unknown parameter

p is called the likelihood function. The value of 11.5% that in this example

corresponds to the maximum value of the likelihood function is therefore the

maximum likelihood.

In other words, 60% is the population proportion p that best explains the

observed results and is thus the best estimate of the true value of the proportion of

the attribute in the population. From our calculations we can also see that if the

population proportion is less than 45%, the likelihood of the observed result is

2.5%. Therefore, 45% is the lower bound of the 95% confidence interval. Similarly,

if the population proportion exceeds 74%, the likelihood of our data is 2.5%. The

maximum likelihood estimate of the population proportion of the attribute is

therefore 60% and the (exact) 95% confidence interval is 45 to 74%.

This method is therefore based on intuitive principles that we discussed earlier

regarding the interpretation of data obtained by sampling and, in essence, just says

that whatever is observed in the sample must be consistent with what exists in the

population. Thus, the most likely value of the parameter we want to estimate is
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Figure 9.25 Likelihood function. The plotted values P are binomial probabilities

of observing 30 hits in 50 trials when the probability p of a hit in one trial ranges

from 0 to 100%. The maximum likelihood of the observed result is 60%,

corresponding to the maximum value of the likelihood function.
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the one that maximizes the possibility of obtaining a set of data such as the one that

was observed.

The maximum likelihood estimator has important properties. There is no other

estimator with lower variance and, as sample size increases, the value of the

estimator converges to the true value of the population parameter and its sampling

distribution approaches the normal distribution.

The maximum likelihood method is a general method of estimation that can be

used whenever the probability distribution of an attribute is known. This

demonstration of the case of single-parameter estimation can be generalized to

problems of much greater complexity of estimating several population parameters

and this is, of course, the major application of the method.

9.15 Estimation of the logistic regression model

Returning to the subject of logistic regression, we will now see how the parameters

of the regression line can be estimated with the method of maximum likelihood.

Recall that the logistic model is

logitðpÞ ¼ aþ b1x1 þ b2x2 þ � � � þ bnxn

where p is the probability of an individual having the dependent binary attribute, x1
to xn are the independent variables, b1 to bn the respective regression coefficients,

and a the constant of the regression line. The model can also be written as

p ¼ eU

1þ eU

if we prefer the prediction to be expressed as the probability of an individual having

the attribute instead of the logit of having the attribute. In this equation,

U¼ aþ b1x1þ b2x2þ � � � þ bnxn and e is the base of natural logarithms.

Maximum likelihood estimation begins by creating a tentative regression model

by assigning a random value to each of the coefficients and to the intercept. Using

this equation of the regression line, we calculate for each individual the predicted

probability of having the dependent binary attribute A by multiplying the values of

the independent variables by their (tentative) partial regression coefficients,

summing these products overall, and adding the regression constant also multiplied

by its (tentative) coefficient. The result is the predicted logit of A, which we

transform into the predicted probability of A using the formula above.

Now let us pretend that this tentative model is the right one. If it actually is, then

the observed values of A should be consistent with the predictions of the model.

This is how we evaluate the plausibility of the regression coefficients. We

arrange the observations in groups having the same set of values of the independent

variables, that is, observations that have the same predicted probability of A. We

will denote the predicted probability of A in group i by pi.

We know that the predicted value is a binomial probability. Therefore, we use

the formula of the binomial distribution to compute, for each group i of subjects
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with the same characteristics, the likelihood of observing the number of subjects

with A that was actually observed, given the number of subjects in that group and

assuming that the true probability of the attribute in that group is pi. For example,

suppose that in a group of five similar individuals the predicted probability pi of A

was 75% and that two of them had the attribute A. The binomial probability of two

hits in five trials when the probability of a hit is 75% is about 9%.

After we have done these calculations for all groups, we compute the joint

probability (likelihood) of our dataset, under the assumption that the tentative

model is correct, by multiplication of the probabilities calculated for all groups.

In practice, it is preferable to work with logarithms, because then we can add all

the computed probabilities instead of multiplying them, making the calculations

easier. The value obtained for the joint probability of the data is thus the logarithm

of the likelihood, or the log likelihood. As any of these names is tricky to

pronounce, hereafter we will refer to the log likelihood as LL.

After this initial evaluation, an algorithm computes the changes that must be

made in the value and sign of the regression coefficients to increase the likelihood.

The process is repeated for the new tentative values of the coefficients and the

likelihood of the dataset is computed. The process continues over and over again in

multiple iterations. At each step the algorithm makes corrections to the values of the

coefficients until no further increase in LL can be achieved, at least to an

appreciable extent, and the process stops. It is said that convergence has been

reached. The maximum likelihood estimates of the regression coefficients are the

latest values tested, those that maximized the likelihood.

The result of the method of maximum likelihood applied to the data in our

example is shown in Figure 9.26. The model seems to fit the data well, but before

we can accept the model we must verify that the assumptions of logistic regression

were not violated.

Like any other statistical method, logistic regression is based on a number of

assumptions. Compared to multiple linear regression, though, the assumptions of

logistic regression are extremely reasonable. For example, as the dependent variable

is the proportion of individuals who present a binary attribute, and that proportion

has a binomial distribution, the assumptions that existed in multiple regression of a

normal distribution of the dependent variable, homoscedasticity for all combina-

tions of the values of the independent variables and the normal distribution of the

residuals are consequently removed. The independent variables need not have a

normal distribution and may be binary, ordinal, and interval. A linear relationship

between the dependent variable and each explanatory variable is also not assumed.

However, logistic regression assumes a linear relationship between the logit of the

dependent variable and all independent variables.

As in multiple linear regression, the observations must be independent, the

model should not omit important variables (underfitting), and it should not contain

irrelevant variables (overfitting). There can be no perfect or important multi-

collinearity between independent variables and all outliers responsible for the

leverage of estimates should be investigated and explained. Basically, these are all

problems that can be easily prevented with good study design.
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In addition to verifying the assumptions of the method, the adequacy of the

model should be assessed with formal methods. We saw in the discussion on

multiple linear regression that the decision on the adequacy of the model was based

on a test of the null hypothesis of all population regression coefficients being equal

to 0, and that this test was based on the analysis of variance. In logistic regression

the same principle applies, but the test is based on the analysis of deviance.

9.16 The likelihood ratio test

Suppose we could obtain several samples of the same population with the subjects

matched for the same independent variables. The coefficients of the regression

equation estimated with the maximum likelihood method will not be exactly the

same. Because of sampling variation, the observed proportions pi of the dependent

binary attribute in identical groups i from the several samples would be different.

Consequently, the maximum likelihood of the observed data would vary from

sample to sample.

If the null hypothesis that all regression coefficients are zero is true, the model

reduces to logit(p)¼ a. This model, consisting only of the constant, is called the

null model. Thus, under H0 the maximum likelihood of our model should not be

much different from the maximum likelihood of the null model.

Therefore, we can construct a statistical test of the null hypothesis that all regression

coefficients are zero by comparing the maximum likelihood of the null model to the

maximum likelihood of our model. We do this by computing the maximum likelihood

of a null model and taking the ratio of the maximum likelihoods of the null model to
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Figure 9.26 Logistic regression line obtained with the method of maximum

likelihood fitted to the data of Figure 9.22.
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the current model. If our model explains the data better than the null model, the

denominator will be greater than the numerator and the likelihood ratio will be less than

1. The smaller the ratio, the stronger the evidence against the null hypothesis.

All that remains to do now is to decide which value of the likelihood ratio

statistic is large enough to allow us to reject the null hypothesis with known prob-

ability. The problem is that the distribution of the likelihood ratio statistic is very

difficult to determine in most situations. Fortunately, there is a way around this.

We define a measure called the deviance, which is twice the difference between

the LL of a perfectly fitted model and the LL of the current model. The likelihood

of a perfectly fitted model is, of course, one. That is, the observed data is com-

pletely explained by the model. Therefore, the LL of a perfectly fitted model is

the logarithm of one, that is, zero. The deviance of the current model is thus

2� (0�LL of the current model) or, more simply, �2LL of the current model.

The quantity �2LL is called the log-likelihood ratio, because the difference

between the LLs is equal to the logarithm of the ratio of the two likelihoods.

Naturally, the better the current model fits the data, the smaller the deviance and the

log-likelihood ratio.

This quantity has the interesting property of following a chi-square distribution

with degrees of freedom equal to the difference between the number of parameters

in the two models. We can thus use the distribution of the log-likelihood ratio to

reject with known probability the null hypothesis that the likelihood of our model is

no different from the likelihood of the null model.

All we need is to find the difference between�2LL of the null model and �2LL

of the current model. The result, called the log-likelihood ratio statistic, follows,

as we have seen, a chi-square distribution with degrees of freedom equal to the

difference between the number of parameters of the current model (the constant

plus the number of independent variables) and the number of parameters of the null

model (the constant). In summary, the number of degrees of freedom is equal to the

number of independent variables in the model.

This test is called, appropriately enough, the likelihood ratio test. In the same

way as the F-test in multiple regression, it tests the hypothesis that all regression

coefficients (except the constant) are zero. A low p-value (i.e., less than 0.05)

rejects the null hypothesis and is evidence that the model has some predictive

power. Later on we will discuss methods for assessing the predictive ability of the

model and to compare models according to their predictive capabilities.

9.17 Interpreting the results of logistic regression

We are now able to interpret the output of a statistical analysis program. Figure 9.27

shows the results of the logistic regression example we have been using.

In the top left corner, we see the results of the various steps of the convergence

algorithm. We can see that the LL will be increasing (becoming less negative) until

the difference from the previous iterations is minimal. The end of the iterations is

determined by a convergence criterion included in the algorithm.
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Displayed on the right is the number of observations (Number of obs), the
log-likelihood ratio statistic of the likelihood ratio test with the number of degrees

of freedom (LR chi2(1)) and the p-value (Prob> chi2) corresponding to the

probability of the log-likelihood ratio statistic exceeding the value 833.88 in a chi-

square distribution with 1 degree of freedom (less than 0.0001). The null hypothesis

of all coefficients being equal to 0 can be excluded with a risk of less than 1:10 000.

In the following line there is another statistic, called Pseudo R2 (Pseudo R2).
This statistic is analogous to the coefficient of determination R2 of linear regression

and has a similar interpretation, although it is not strictly, as it is in linear

regression, a measure of the proportion of the variance of the dependent variable

explained by the model.

Finally, the logistic regression table displays, for each independent variable, the

partial regression coefficient (Coef.) and its standard error (Std. Err.), the
result of the significance test of the regression coefficient (z) and its p-value

(p>jzj), and the limits of the 95% confidence interval of the regression coefficients

([95% Conf. Interval]).
We can now use this model to estimate the probability that an individual has the

attribute simply by inputting a value for height. For example, if we want to know

how likely it is that an individual 170 cm tall is a male, we calculate

P ¼ 2:72�43þ0:27�170

1þ 2:72�43þ0:27�170
¼ 0:948

Unless one is accustomed to think of probabilities in terms of logits, the coefficients

themselves have no direct interpretation, which is frustrating at first glance when we

think about how important the information contained in the coefficients was in

linear regression. That is just at first glance, though, because actually we can obtain

a measure of great clinical interest from the coefficients with a simple operation.

We will see how in the next section.

Iteration 0:   log likelihood = -1048.2766 
Iteration 1:   log likelihood = -692.93092 
Iteration 2:   log likelihood = -638.18855 
Iteration 3:   log likelihood =  -631.5008 
Iteration 4:   log likelihood = -631.33458 
Iteration 5:   log likelihood = -631.33444 

Logit estimates                                   Number of obs   =       1853 
                                                  LR chi2(1)      =     833.88 

Prob > chi2     =     0.0000 
Log likelihood = -631.33444                       Pseudo R2       =     0.3977 

------------------------------------------------------------------------------ 
 male gender |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      height |   .2674934   .0133891    19.98   0.000     .2412513    .2937355 
       _cons |     -43.07   2.190711   -19.66   0.000    -47.36371   -38.77628 
------------------------------------------------------------------------------ 

Figure 9.27 Results of logistic regression analysis of gender on height.
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9.18 Regression coefficients and odds ratios

Just as in linear regression, each logistic regression coefficient represents the

difference in the average values of the dependent variable between two consecutive

values of the independent variable. Thus, in the example we have been working on,

the value of the coefficient of height means that the logit of being a male increases

by 0.267 for each centimeter increase in height. In other words, 0.267 is the value of

the difference between the logit of being a male for a given height and the logit of

being a male for that height minus 1 cm.

Recall that the logit is the natural logarithm of the odds and that the difference

between the logarithms of two quantities is equal to the logarithm of the ratio

between these quantities, that is, ln(a)� ln(b)¼ ln(a/b). Hence, if 0.267 is the

difference between the logarithms of the odds of the male gender at two consecutive

values of height, it is also the logarithm of the ratio of the odds of male gender at

two consecutive values of height. In other words, the logistic regression coefficient

is the natural logarithm of the odds ratio. Therefore, exponentiation of its value will

give us the odds ratio.

Thus, the exponential of the logistic regression coefficients is an estimate of

the odds ratio of the dependent variable for each unit increase of the independent

variable. In our example, the probability (or, more precisely, the odds) of an in-

dividual being male increases by e0.267¼ 1.30 times per centimeter in height.

Alternatively, we could also say that the probability increases 130%, or that the

probability increases by 30%, per centimeter of height. The 95% confidence

limits of the odds ratio are obtained in the same way. In this example they are

1.27 to 1.34.

Suppose that, for some reason, we wanted to express the association between

gender and height as the odds ratio for each 5 cm increase in height. We could

multiply the regression coefficient by 5 followed by exponentiation of the result.

We can also work directly with the odds ratios, but as we are no longer in the

logarithmic scale the odds ratios must be multiplied, not added. Therefore, if the

odds ratio is 1.3 per centimeter in height, then per 5 centimeters in height the odds

ratio will be 1.35, or 3.7. Similarly, when we want to express the combined effect

of two independent variables in a logistic regression, their odds ratios should be

multiplied.

In the case of multiple logistic regression, the odds ratio of an independent

variable measures the degree of association between that variable and the dependent

variable, controlling for the effects of all other independent variables in the model.

For this reason the odds ratio is often called the adjusted odds ratio.

9.19 Applications of logistic regression

The applications of logistic regression in clinical research are manifold. Logistic

regression is often used for modeling purposes. The dependent variable can encode

the occurrence of a particular clinical outcome (e.g., death, complications, hospital
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discharge), and the model applied to identify patient factors associated with the

outcome and their relative importance. This is the typical study of prognostic

factors often found in the scientific literature.
These studies are based on case–control or one-sample cohort designs. Data on

all attributes suspected or known to be associated with the outcome is collected

from a random sample of subjects, and controls when applicable. In order to avoid

including unnecessary variables in the model, a preliminary selection of the

attributes is made by testing the association of each attribute with the outcome using

the two-sample tests described in previous sections. Attributes that show some

evidence of an association with the outcome, plus the attributes that are already

known to be associated with the outcome, are included in the logistic model. Then,

the model is perfected with a stepwise procedure and finally the assumptions of

logistic regression are checked for possible violations.

We can also apply logistic regression to problems of prediction, where we want

to be able to estimate the probability of some specific outcome in a particular

individual and thereby develop predictive systems of individual risk, or risk

stratification systems.

The dependent variable may identify two groups, as in case–control studies, and

the logistic regression model used for the identification of the important attributes

for the discrimination between groups, enabling the development of clinical

classification instruments that may be used, for example, for the rapid screening of a

particular disease or even for diagnostic purposes.

Logistic regression can also be used to test differences in proportions between

two groups, being equivalent to the chi-square test for the comparison of proportions,

or to test these differences, controlling the effects of nominal covariates being, in this

case, equivalent to a test often used in epidemiology, the Mantel–Haenszel test.

Like multiple regression, logistic regression allows the use of dummy variables

and, consequently, the analysis of independent categorical variables. Likewise,

logistic regression allows analyses adjusted for the values of covariates, the

inclusion of dummies for modeling nonlinear relationships (e.g., quadratic terms),

and testing of interactions between independent variables.

The selection of variables is based on the same principles that were discussed in

regard to multiple linear regression. For the determination of the variables that must

be dropped from the model in stepwise logistic regression, the likelihood ratio of

the current model is compared to the likelihood ratio of that model with one of

the independent variables removed. If the likelihood ratio test is not significant,

then the reduced model has a similar performance and therefore that variable can

be removed.

Although the analysis of studies of prognostic factors is basically the same as in

studies of predictive factors, there are some minor differences that should be noted.

Studies of prognostic factors have above all an explanatory purpose, while

predictive studies have the very pragmatic aim of producing excellent predictions.

Thus, the former have the requirement of interpretability of the models from the

biological and clinical standpoints, which limits the parameterization of the model

to simple variables and relationships. As we saw previously, the presence of an

212 BIOSTATISTICS DECODED



interaction or a quadratic term complicates the interpretation, so these models are

typically developed without those terms.

Rather, models that are intended primarily for prediction need explain neither why

certain variables are in the model, nor how their effects are exerted. These models

can therefore be rich in interactions and quadratic terms as long as they contribute to

improving the adjustment. Interactions should be the product of standardized variables

(divided by the standard deviation) to reduce the variance. However, these models

are much more susceptible to overfitting than the explanatory models. The validation

of a predictive model on a separate sample of individuals is therefore of utmost im-

portance. We will see later on how to validate a predictive model.

For some time, logistic regression was the method of choice for the study of

prognostic factors. However, due to the characteristics of these studies, many of

them requiring the observation of individuals over sometimes prolonged periods of

time, with the consequent difficulty in obtaining complete data on the outcome,

logistic regression has been replaced in these problems by another regression

method that can deal with censored data. We will cover this subject right after we

discuss the method for model validation.

9.20 The ROC curve

The demonstration by a significant likelihood ratio test that a given logistic model

fits the data well and has good explanatory properties by a high value of the pseudo

R2 does not necessarily mean that its performance in the classification of individuals

or in the prediction of individual outcomes is clinically interesting. Therefore, in

addition to those test statistics, in studies of prognostic factors for risk stratification,

and in the construction of clinical instruments for patient classification, it is of great

importance to actually measure the performance of the model in the setting where it

was meant to operate.

The evaluation of the performance of the model begins with the definition of a

classification rule based on the probabilities predicted by the model. A natural

choice for this rule is to adopt a threshold of 50%, that is, if the predicted

probability of an individual having the attribute is greater than 50% then the

individual is classified as having the attribute.

After we have set this rule, we may arrange the observations in a classification

table. Figure 9.28 displays a classification table with data drawn from the problem

of predicting the gender of an individual from body height. The table shows how

individuals with and without the attribute were classified by this rule.

From this table we can obtain important measures of model performance. In the

group of 1377 individuals who had the attribute (man), 1283 (93.2%) were correctly

classified. In the group of 466 who did not have the attribute (woman), 274 (58.8%)

were correctly classified. These two measures are called, respectively, sensitivity

(percentage of correctly classified among those with the attribute) and specificity

(percentage of correctly classified among those without the attribute). The sensi-

tivity is thus the true positive rate and specificity is the true negative rate. The
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false positive rate is thus 192 classified as man among 466 women (41.2%) and the

false negative rate is 94 classified as woman among 1377 men (6.8%).

In this example, such measures mean that the adopted classification rule will

identify, from body height, 93% of the men and 59% of the women. The total

number of individuals correctly classified by this rule was 1557 from the total of

1843 in the sample (84.5%).

The percentage of correctly classified must be interpreted with caution, because

it is not always generalizable. It depends on the design of the study from which the

data was obtained. Whereas in a one-sample study of the target population the

percentage of correctly classified can be generalized to the population from which

the sample came (being also advisable to present the confidence interval), in a case–

control study there is no population for which that result can be generalized, as

these studies are by definition based on samples from two distinct populations.

Therefore, in case–control studies, the proportion of correctly classified depends on

the relative size of the two samples. In this example, if we reduce the size of the

sample of men, the percentage of correctly classified will decrease and, conversely,

it will increase if we increase the number of men.

In one-sample studies, the proportion of individuals with the attribute is a

point estimate of the probability of the attribute in the population. Thus, in such

studies we can divide individuals into two groups according to their classifica-

tion by the decision rule, and estimate in each of the groups the proportion of

individuals with the attribute. If the data from the example we have been dis-

cussing was obtained in a one-sample study (as it actually was), we can estimate

that the proportion of men in the group classified as man is 1283/1475 (87%),

and that the proportion of women in the group classified as woman is 274/368

(74.5%). But if the study had been a case–control study, in which we established

at the outset the number of men and women who would be included in the study,

these estimates would be distorted by the relative number of subject in the two

groups. In the example, if we increase the size of the sample of men the first

proportion would increase, and if we increased the size of the sample of women

then that proportion would decrease.
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Figure 9.28 Classification table of observed to predicted.
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These two measures of model performance are called, respectively, the positive

predictive value and the negative predictive value. The first is the probability of

an individual actually having the attribute when the model predicted him or her to

have the attribute, and the second is the probability of an individual not having the

attribute when the model predicted him or her not to have the attribute.

Therefore, while predictive values give us a measure of performance and an

individual estimate of the probability of the attribute, the sensitivity and specificity

give us only a measure of performance. However, since the latter statistics can be

determined both from one-sample and from case–control studies, the evaluation of

model performance is based mainly on sensitivity and specificity.

Sensitivity and specificity are related and vary inversely. If the decision rule

were to classify all individuals as men, the sensitivity would be 100% and the

specificity 0%. Conversely, if the rule were to classify all individuals as women, the

sensitivity would be 0% and the specificity 100%. Therefore, the sensitivity and

specificity depend on the cut-off point defined by the classification rule and neither

measure when isolated will tell us anything about the performance of the model.

Therefore, a better way of evaluating the performance of classification and

predictive models would be by assessing how those two statistics are related through a

graph of the sensitivity and specificity of each cut-off point of the classification rule.

Such a graph is called a ROC curve and an example is presented in Figure 9.29.

The name of this curve stands for Receiver Operating Characteristics, an

analytical tool used in telecommunications that relates the signal to noise for diffe-

rent settings of a receiver. By analogy with the problem of the accuracy of classi-

fication systems, the signal reflects the true positive rate, and the noise the false

S
en

si
tiv

ity
 

1  Specificity  0.00 0.25 0.50 0.75 1.00 
0.00 

0.25 

0.50 

0.75 

1.00 

Area under the 
ROC curve 

Figure 9.29 The ROC curve.
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positive rate. The former is the sensitivity of a classification rule and the latter is

one (or 100%) minus the specificity of the rule. In a ROC curve the sensitivity

corresponds to the vertical axis and 1� specificity to the horizontal axis. Each point

in the graph corresponds to a possible cut-off value, that is, to the value of the logit

or, willingly, to the probability of the attribute predicted by the model.

In a perfect system that correctly classifies all individuals the curve would pass

through the upper left corner of the graph (100% sensitivity and specificity). The

more the curve departs from that corner, the worse the performance of the

classification system. The area under the ROC curve reflects thus the

performance of the classification system, being 100% of the area of the chart in a

perfect system, 50% if the system does not perform better than classifying

individuals strictly by chance, and below 50% if the system performs worse than

classifying by chance.

We can think of the area under the ROC curve as reflecting the proportion of

individuals correctly classified by the system, regardless of the cut-off chosen for

the decision rule (although an exact interpretation of the meaning of the area under

the ROC curve is another). In general, a system for risk stratification or an

instrument for the classification of patients will have the potential for clinical

application only if the area under the ROC curve exceeds 80%.

The area under the ROC curve thus represents an additional measure of the

performance of a classification system. It has an advantage over the other measures

discussed so far because it integrates information about sensitivity and specificity

into a single measure that is independent of the chosen cut-off. This means that we

can compare the performance of two different classification systems through their

areas under the ROC curve.

The ROC curve is also a useful tool for deciding on the best value of the cut-

off for the classification rule. In general, it is intended that the decision rule

identifies the same proportion of individuals with and without the attribute, that

is, it has sensitivity equal to specificity, so the cut-off nearer the intersection of

the diagonal connecting the upper left to the lower right corner should be

selected. However, there may be specific circumstances in which one might

prefer greater sensitivity, and others where a higher specificity is preferred, and

the curve helps to determine the best threshold considering the objectives of the

classification system.

9.21 Model validation

As a demonstration of what can be done with logistic regression, assume that we

want to develop a system for predicting the gender of an individual, from the age,

height, and weight, for which we will use the same data of the previous example. In

the analysis, gender was coded female¼ 0 and male¼ 1.

The first step is to split the sample randomly into two groups, one with a third of

the observations and the other with two-thirds. This latter sample will be used to

develop the logistic model and is called the training set. The other, smaller sample
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will be used to verify whether the performance of the predictive system we are

about to develop is maintained when it is applied to a different set of data belonging

to the same sample. This is called the testing set. We need the testing set to make

sure that our model is generic enough and is not overfitted to the dataset from which

it was developed.

Then, we develop a logistic regression model of gender on age, height, and

weight, using the training set. The result is presented in the table of Figure 9.30. All

partial regression coefficients were significant.

Next, we compute for each individual in the training set the predicted logit of

being a male from the regression equation 0.08� age(years)þ 0.27� height

(cm)þ 0.05�weight(kg)� 51. If our goal is to evaluate the overall performance of

the model, the area under the ROC curve is probably the best single measure. If our

goal is to develop a risk stratification system, then with the assistance of the ROC

curve we select the cut-off value of the classification rule as the value of the

predicted logit that defines a rule with equal sensitivity and specificity, as is shown

in Figure 9.30. In the example, the cut-off point corresponds to a value of 1.025 of

the predicted logit and we adopt the following rule: an individual whose predicted

logit is equal to or greater than 1.025 will be classified as male, otherwise as female.

At this point we have defined the classification rule of our system as 0.08� age

(years)þ 0.27� height(cm)þ 0.05�weight(kg)� 51	 1.025 predicts a male,

otherwise a female. The performance of a classification system with this cut-off

seems adequate. The sensitivity and the specificity are 86% and the area under the

ROC curve 93%. As this is a one-sample study, we may compute the positive

predictive value (95%), the negative predictive value (67%), and the proportion

correctly classified (86%).

-------------------- 
     male |   Coef.  
----------+--------- 
      age | .0798896 
   height | .2745292 
   weight | .0452658 
    _cons | -51.3104 
-------------------- 

0.08age+0.27height+0.05weight 51 1.025 

9age+30height+5weight>5700 

Selection of the 
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Figure 9.30 Development of a risk stratification system.
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If we plan to use this system in a clinical setting, perhaps it will be better

accepted if the coefficients are rounded numbers easier to memorize, so we divide

all the coefficients by the one with the lowest value and multiply them by an integer

(5 in this example) to obtain rounded scores. The simplified scoring system has the

form 9� age(years)þ 30� height(cm)þ 5�weight(kg) and an individual whose

score exceeds 5700 is predicted to be male.

We then evaluate the performance of the system on the testing sample. If our

aim is to verify the overall performance of the model, then the areas under the ROC

curve should be compared. If our aim is to develop a risk stratification system, then

we need to compute the score of each subject and calculate from a classification

table the sensitivity and specificity of the adopted classification rule. In this

example, these values were, respectively, 89% and 85%.

The testing sample is not meant to show that our system is generalizable.

Rather, its purpose is mainly to show that our system is not generalizable if its

performance for a different set of data is below acceptable standards. In practice,

when the sample test results are unsatisfactory, we should try to understand the

reasons for the degradation in performance. Possible reasons include violation

of model assumptions, missed important variables in the model, multi-

collinearity, overfitting, and poor model parameterization with failure to

consider interactions and nonlinear relationships. If these problems can be

corrected, a new model is estimated and reevaluated until eventually a reason-

ably robust model is obtained.

If the system passes this test, as was the case in our example, it is necessary to

show that its performance is reproduced for a completely different sample of

individuals, called the validation set. Some degradation of performance of the

classification system almost always happens in validation sets, as is shown in

Figure 9.31 when the model was applied to a sample of 663 subjects from a study

conducted on the same population but in a different setting.
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Figure 9.31 ROC curves on the testing set and validation set.
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The important point is that the performance measures estimated in the

validation set remain at a level that makes the system relevant for the purpose it

was meant to have.

9.22 The Cox proportional hazards model

We will now see how we can apply the same regression principles to longitudinal

studies where we are interested in the time to the occurrence of a specific event or

outcome (e.g., death) and in identifying a set of attributes that will allow us to

predict the occurrence of that outcome.

The appropriate study design for this type of research is the cohort study, both

the one-sample and the two-sample designs. For each individual we need to collect

data on the values of the attributes that we are interested in assessing as predictors

and on the time elapsed from entry into the study to the occurrence of the event of

interest. As is usual in this type of study, at its conclusion we will have complete

information about the time to the event in the subset of subjects in whom the event

did occur, and censored data for those in whom the event did not occur during the

observation period.

What would we do to analyze these data with multiple linear regression? We

could select as the dependent variable the time to the event and as independent

variables the attributes of the subjects. The coefficients would then estimate the

difference of mean time to the event between two consecutive values of each

respective independent variable.

Unfortunately, this solution would not work because we would not have

complete data for many observations. Censored data on time to the event would be

a violation of the assumptions of multiple regression.

What if we selected as dependent variable the occurrence of the event, ignoring

the time to the event, and fitted a logistic model? That would not work either.

Because of censoring and varying observation times, the outcome of a subject

censored after a very short follow-up would be considered as having the same

outcome as a subject censored after a very long follow-up. This, of course, would be

inappropriate.

Remember that we had a similar problem when discussing the comparison of

survival rates when the time to an event was censored. The solution was based on

estimating the risk of the event in each day (or whatever unit of time was used)

among those surviving up to that day. If censoring was non-informative, that is, not

related to the outcome, an unbiased estimate of the risk of the event in each day

could be based on the number at risk up to that day.

Likewise, when we want to investigate the relationship between time to an event

and a set of patient attributes we can adopt a similar approach. We cannot estimate

the time to an event because the data is censored, but we can estimate from our

observations the rate of occurrence of the event As the time to an event is inversely

related to the rate, that is, the higher the rate, the shorter the time to the event,

instead of trying to predict the mean time to an event from the explanatory
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variables, we will predict the rate of occurrence of an event on time. We will now

see how we can develop such a model.

Let us first define the hazard rate. Consider, for example, that we have

followed up a cohort of women with breast cancer for a long time and that we are

searching for patients variables related to an event that occurs only once in each

subject, say, death.

If we look at Kaplan–Meier estimates we will realize that women in our

cohort are exposed each day to a certain risk of death which is not the same

every day. For example, Figure 9.32 shows the yearly death rate after diagnosis

of breast cancer in a cohort of 683 women. We can see that the death rate is high

in the years following diagnosis because of disease progression, then it de-

creases progressively to a minimum at about 10 years, increasing thereafter

mostly because of death from old age.

We call the description of the event rate over time the hazard rate or hazard

function. A suggestive name also used sometimes is the force of mortality. The

hazard rate at a given moment t, denoted by h(t), is thus the event rate at moment t

among the subjects in whom it did not occur up to that moment.

Now consider that we wish to investigate whether a certain patient attribute is

associated with decreased survival, for example, the finding of lymph nodes positive

for the tumor at the time of diagnosis. If the attribute is actually related to survival

time, then the hazard rate will be higher among those with positive nodes than in

those with negative nodes. We call the hazard rate of those without the attribute, the

baseline hazard rate, and denote it by h0(t).

Accordingly, if we estimate that the hazard rates are different in the two

populations, then we can conclude on an association between positive lymph nodes

and survival after diagnosis in breast cancer patients.

0
5

1
0

1
5

D
e

a
th

 r
a

te
 (

%
)

0 5 10 15

Time (years from diagnosis)

Figure 9.32 Hazard rate in women diagnosed with breast cancer.

220 BIOSTATISTICS DECODED



Clearly, it makes no sense to estimate the difference between the hazard rates at

every time t. However, if the difference in the hazard rates between the two

populations is assumed constant over time, then we can obtain a single estimate of

that difference.

If two conditions are met, the difference between the hazard rates is indeed a

constant. One condition is that the baseline hazard rate is the same for all women

without the attribute. The other condition is that the difference between the hazard

rate h(t) of those with the attribute and the hazard rate h0(t) of those without the

attribute does not change over time. Later we will look deeper into the implications

of these conditions, but for now let us write down our model.

Recall from the discussion on relative risks that it was said that the best way to

express differences between two rates or proportions is by their ratio. It was also

said that it is easier to work with natural logarithms than with ratios, because then

we can work with subtractions instead of divisions. Therefore, our problem comes

down to estimating the model

ln hðtÞ � ln h0ðtÞ ¼ bx

which is assumed to be the same for all t.

If we want to estimate a model adding another attribute, say, positive hormonal

receptors, and if the two attributes are independent, then each attribute will change

the difference ln h(t)� ln h0(t) by a certain amount b. If we call the two attributes x1
and x2, the expression above becomes

ln hðtÞ � ln h0ðtÞ ¼ b1x1 þ b2x2

We can generalize this equation for any number of explanatory attributes and write

a general expression for this model as

ln hðtÞ � ln h0ðtÞ ¼ b1x1 þ b2x2 þ � � � þ bnxn

Then we can write that equation in regression fashion as

ln hðtÞ ¼ ln h0ðtÞ þ b1x1 þ b2x2 þ � � � þ bnxn

Its interpretation is that the logarithm of the hazard rate can be expressed as a

function of the baseline hazard rate, analogous to the intercept in multiple

regression, and of a linear combination of explanatory variables.

As a final touch, we take the antilogarithm to express the hazard rates as

proportions and the result is

hðtÞ ¼ h0ðtÞexpðb1x1 þ b1x2 þ � � � þ bnxnÞ
In words, this model postulates that the hazard rate at a given moment in time can

be split into a baseline hazard rate h0(t) and a hazard rate that is determined by the

values of a set of independent variables. The independent variables need not be

binary, but can also be interval if a linear relationship between the logarithm of the

hazard rate and each variable can be assumed. In other words, this model requires

the hazard rate to increase or decrease by a fixed value across the values of each
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independent variable on a logarithmic scale and, consequently, the effect of each

variable on the hazard rate is exponential on a linear scale.

This model is called the Cox model. It belongs to a group of survival models

called proportional hazard models and has some interesting and useful properties

that make it preferable to other models in many clinical research problems.

There are several proportional hazard models, and they are distinguished from

each other by the assumptions they make about the distribution of the baseline

hazard (e.g., exponential, Weibull). The innovation of the Cox model is that it

makes no assumptions at all about the distribution of the baseline hazard. Actually,

this model does not even estimate the value of h0(t), it only estimates the values of

the partial regression coefficients.

Now we can understand the reason for the wide application of this model in

clinical research. The fact that the distribution of baseline risk is irrelevant increases

the robustness of the method and allows its application to the study of any type of

event. Of course, this advantage comes at a price.

Elimination of the estimation of h0(t) in Cox regression is obtained at the cost of

doing without the possibility of estimating the value of the dependent variable h(t)

from the values of the independent variables, unlike the usual case in other

regression models. What the Cox model does estimate is the hazard ratio. The
hazard ratio on a particular day is thus defined for the set of individuals in whom the

event has not yet occurred (called the risk set) as the ratio of the hazard rate of the

event among those with the attribute to the hazard rate of the event among those

without the attribute.

Take the case of a binary independent variable x. If we represent this variable

by x0 when it takes the value 0 and by x1 when it takes the value 1, the hazard

ratio (HR) between the two values of this variable is

HR ¼ h0ðtÞexpðbx1Þ
h0ðtÞexpðbx0Þ

If we assume that the baseline hazard rate h0(t) is the same for all subjects we

can drop that term from the expression so it becomes

HR ¼ expðbx1Þ
expðbx0Þ

It follows that, under the assumption that the baseline hazard function is

the same for all subjects, its knowledge is not necessary for estimating the

hazard ratio.

For the estimation of partial regression coefficients, the method of maximum

likelihood we used in logistic regression is not feasible because the population at

risk is not the same every day – it decreases because of censoring and because

patients have reached the outcome under study. To take account of the changing
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sample size, the method for estimating the regression coefficients used in the Cox

model is themethod of maximum partial likelihood.

Analogous to the method of maximum likelihood, this method is also based on

the determination of the probability of a particular dataset for various values

assigned to the regression coefficients. The difference to the method of maximum

likelihood is that here a partial likelihood is computed for each occurrence of the

event, therefore taking into account the decreasing sample size.

This method assumes that time is continuous and, therefore, there cannot be two

or more individuals with exactly the same time to the event. As in practice time is

measured on a discrete scale, that is, in number of days, months, or years, this may

result in several ties in elapsed time to the event. In this case there are a number of

methods that deal with ties, perhaps the most popular being the Breslow method.

This is the simplest method but also one of the least accurate, whereas exact

methods exist but have the drawback of being computationally very expensive.

9.23 Assumptions of the Cox model

We have already mentioned several assumptions of the Cox model, but further

discussion is useful in order to better understand their full meaning and the

consequences when they are not met.

In that model, each regression coefficient represents by how much each variable

increases or decreases the hazard rate above or below the baseline hazard. This is

illustrated in Figure 9.33, representing on the left the baseline hazard function,

which is unknown but assumed equal for all subjects. An attribute with a negative

regression coefficient decreases the hazard rate below the baseline hazard and is

therefore a factor of good prognosis. This is represented in the middle graph of

Figure 9.33. Conversely, a positive coefficient increases the hazard rate above the

baseline hazard and is therefore a factor of poor prognosis (Figure 9.33, right

graph). Needless to say, if the coefficient is zero, that variable does not change the

baseline hazard and therefore has no predictive interest.

The assumption of equality of the baseline hazard function for all subjects

implies that the entry point in the study must be a clearly defined moment in the life

of a subject, so that all follow-ups are synchronized from that moment on.

Sometimes this is not perfectly achieved, such as when study entry is defined as the

time of diagnosis because a varying amount of time may have elapsed between the

onset of a disease and diagnosis. Good study design is therefore essential for this

assumption to hold.

As the hazard ratio is assumed to be constant over time, this means that in this

model it is assumed that the effect of an attribute on hazard rate is constant over

time, as illustrated in Figure 9.33. Thus, for example, if positive nodes at diagnosis

double the death rate at 1 year, then the rate at 5 and 10 years after diagnosis, and

for the entire lifetime of the subject, is also doubled. This is a key assumption of the

Cox model and is called the proportionality assumption. This assumption must

always be checked for each independent variable in the model.
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There are several methods for testing the proportionality assumption, some of

them graphical and some based on statistical tests. One of the most popular,

although subjective, is the log–log plot. This is a graph of the logarithm of the

cumulative hazard for each value of an independent variable against the logarithm

of time. While the hazard rate is the instantaneous probability of the event, the

cumulative hazard at time t is the probability of the event from entry into the study

up to time t. The cumulative hazard is the logarithm of the reciprocal of the survivor

function and can be obtained from Kaplan–Meier estimates. If the proportionality

assumption is valid, the log–log plot will contain several lines, one for each value of

the independent variable, separated by constant vertical distances (Figure 9.34, left

graph). If the lines converge (Figure 9.34, right graph), this is an indication that the

proportionality assumption does not hold.

Violation of the proportionality assumption can be readily suspected by

inspecting Kaplan–Meier curves. If the curves cross twice, then the assumption

does not hold.
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Figure 9.33 Illustration of the proportionality assumption.
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Figure 9.34 Visual assessment of the proportionality assumption with log–log

plots: left, the expected plot when the proportionality assumption holds; right, the

converging lines indicate violation of the proportionality assumption.
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In addition to the assumptions of proportionality and of equality of the baseline

hazard function for all subjects, the Cox model also assumes that censoring is not

informative, that the hazard rate increases or decreases proportionally across the

values of the independent variables, and that the observations are independent, as

well as the other conditions common to other regression models with respect to

multicollinearity, overfitting, and underfitting.

9.24 Interpretation of Cox regression

In the Cox model the partial regression coefficients bi estimate the difference in the

logarithm of the hazard rate between two consecutive values of an independent

variable. Therefore, exponentiation of the coefficients will give the hazard ratio

between two consecutive values of the independent variable because ln(a)�
ln(b)¼ ln(a/b) and exp[ln(a/b)]¼ a/b.

The hazard ratio has an interpretation identical to the relative risk. For

explanatory binary attributes the hazard ratio reflects the proportional increase in

the hazard rate in subjects with the attribute to subjects without the attribute. In the

case of explanatory interval attributes it reflects the proportional increase in the

hazard rate for each unit increase in the value of the attribute. Thus, for example, if

the regression coefficient of the independent variable X has the value 0.5, the hazard

ratio is exp(0.5)¼ 1.65. This means that for each increase of one unit in X, the rate

of the event increases 1.65 times. Likewise, if the coefficient is �0.17, then exp

(�0.17)¼ 0.84, meaning that for each increase of one unit of X, the risk of the event

decreases by 16%.

Now we should be able to interpret the results of an analysis using the Cox

proportional hazards model. Figure 9.35 shows the results of a Cox regression of

overall survival after the diagnosis of breast cancer on three patient attributes,

namely age in years, T (tumor size greater than 5mm), and N (tumor spread to four

or more lymph nodes). Below the results of the iterations of the maximum partial

likelihood method is the information that the Breslow method for ties of survival

times was used. Next is information on the composition of the sample, where we are

told that a total of 158 deaths were observed in 683 women during an observation

period of 4105 person-years.

On the right, the significant (p < 0.0001) result of the likelihood ratio test means

that the overall model is significant, that is, at least one independent variable is

associated with survival. In the table below are the estimates of the partial

regression coefficients, their standard errors, the statistics of the significance tests

of the regression coefficients and the associated p-values, and the 95% confidence

limits. All coefficients are significant and therefore we conclude that all three

attributes are associated with overall survival.

Exponentiation of the coefficients and of the 95% confidence limits will allow

easier interpretation of the regression coefficients. The coefficient of age is

0.015 971 4 and exp(0.015 971 4)¼ 1.0161. Therefore, the death rate increases by

1.61% for each year increase in age, at a constant value of the other explanatory
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variables. In other words, among women with the same T and N, each year of age

increases the death rate by 1.61%.

The hazard ratios for the other attributes are obtained the same way. Thus,

for T the hazard ratio is exp(0.458 018 4)¼ 1.580 938 and for N is exp

(0.610 401)¼ 1.841 17. Accordingly, among women of the same age and with the

same N, a tumor size greater than 5mm at diagnosis increases the death rate by

58%. Among women of the same age and tumor size, the presence of four or more

positive nodes increases the death rate by 84%.

The Cox proportional hazards model has been used extensively in medical

research for modeling, prediction, and classification. In many respects, Cox

regression is similar to logistic regression in the modeling techniques and in its

applications. Thus, we may use dummy variables to model and test interactions, and

to represent categorical variables. We can also model curvilinear relationships. We

can use Cox regression for the same problems where the logrank test is used.

However, in situations where the estimation of hazard ratios is not of primary

interest, the logrank test may be preferable because it is free of assumptions.

To conclude, a brief reference to some extensions of the Cox proportional

hazards model is in order. One of the most important is Cox regression with time-
varying covariates. The proportional hazards model assumes that the value of the

independent variables is the same throughout time. For example, if we enter the

baseline hemoglobin as an independent variable into a model, the method will

estimate the hazard ratio as if in each individual the hemoglobin level was constant

over time until the occurrence of the event. To obviate this condition, a model with

time-varying covariates allows the inclusion of multiple values of one or more

independent variables recorded at different points in time. The analysis is based on

splitting each subject into several observations, one for each value of the covariate.

Iteration 0:   log likelihood = -934.65558 
Iteration 1:   log likelihood = -919.71675 
Iteration 2:   log likelihood =   -919.701 
Iteration 3:   log likelihood =   -919.701 
Refining estimates: 
Iteration 0:   log likelihood =   -919.701 

Cox regression -- Breslow method for ties 

No. of subjects =          683                     Number of obs   =       683 
No. of failures =          158 
Time at risk    =         4105 
                                                  LR chi2(3)      =     29.91 

Log likelihood  =     -919.701                     Prob > chi2     =    0.0000 

------------------------------------------------------------------------------ 
         _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 
        age |   .0159714   .0070531     2.26   0.024     .0021476    .0297952 
          T |   .4580184   .1775713     2.58   0.010     .1099851    .8060516 
          N |    .610401    .162813     3.75   0.000     .2912935    .9295086 

------------------------------------------------------------------------------ 

Figure 9.35 Example of the result of a Cox regression.
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This model assumes that the time-varying variables are exogenous, that is, their

value does not depend on elapsed time. One example of an endogenous variable,

and therefore inadequate for this model, is patient age, which, obviously, increases

with elapsed time.

Other extensions to the model that are occasionally used are the Cox model

with multiple failure data, which allows the analysis of events that may occur

several times in the same individual, and the Cox model with competing risks,

used in situations where several distinct outcomes are studied simultaneously,

which may occur in the same individual, but the occurrence of an event prevents the

occurrence of others. A simple example might be to assess the response to therapy

in cancer patients, in whom death due to drug toxicity prevents evaluation of the

time to progression.

STATISTICAL MODELING 227





10

Measurement

10.1 Construction of clinical questionnaires

In the opening section of the book it was mentioned that biostatistics was also

involved in measurement. It was also said that biostatistics provides methods for

measuring things that are known to exist but cannot be measured by conventional

instruments, like pain or anxiety. This is surely intriguing for many people, and

some may even think this is suspicious, because common sense tells them that

we can only measure what is observable. Of course, that is not true. Everybody is

familiar with measurements of things that we cannot observe, for example, time

and the force of gravity.

Much more intriguing, though, is the possibility of measuring things that are

abstract concepts that exist only in our mind, like quality of life, satisfaction with

the received care or, for that matter, anything we might think of. Again, this is not

impossible. For example, we have seen in linear regression that we can find the

coordinates of the center of a cloud of points in a scatterplot, which itself is an

imaginary point, through the means of the two variables in the graph. The center of

the cloud of points is what is called a construct, that is, an unobservable entity that

cannot be measured directly but can be derived from the measurement of other

directly observable variables.

Actually, there is nothing strange about this – we have seen before that we are

able to measure things even though we do not observe them. In regression analysis

we were able to predict the value of an attribute of a subject through the values of a

set of variables that were related to that attribute. For example, we could derive the

respiratory peak flow of any subject from the values of height and gender.

Therefore, we do not actually need to observe something in order to measure it, as

long as we can measure a set of attributes that are related to it.

So we may begin by considering that the construct we want to measure is a

continuous variable like any other continuous variable, but with the particular
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characteristic that it cannot be observed. The difficulty, then, lies in the creation of a

model that will allow us to predict the value of the unobservable variable from a set

of observed attributes. In regression, the models are developed with knowledge of

the actual value of the dependent variable, so this method applies only to observable

attributes. The method of factor analysis allows us to define a set of independent

predictors of an unobservable attribute.

Actually, factor analysis goes beyond that. The constructs of interest are often

complex entities which involve several dimensions, and factor analysis helps us

discover the hidden dimensions underlying a dataset, thereby helping us understand

the relevant factors that determine the expression of a set of variables that can

be measured.

However, factor analysis would not tell us explicitly what the dimensions

explaining the observed data stand for. Factor analysis will only tell us which

observed variables are associated with each dimension, and it will be up to the

investigator to figure out what each dimension is measuring, guided by the pattern

of relationships between the observed variables and each dimension. Thus, identi-

fication of the dimensions is a subjective exercise and consequently may not always

be reproducible. This is the reason why factor analysis is not generally regarded as

an adequate method for scientific work.

Nevertheless, this approach can be taken to develop clinical instruments for

measuring virtually anything. Suppose we want to be able to measure some construct,

say, happiness. We could start by collecting observations on measurable variables that

in some way may be related to the construct, representing for example opinions,

beliefs, attitudes, behaviors, values, feelings, sensations, and so on. These variables

need to be quantified, at least in an ordinal scale, and Likert scales are often used for

this purpose. Factor analysis would extract from the data the main dimensions, called

factors in this context, that explain the variability in the data. The investigator would

then name the factors guided by the meaning of the variables most related to each

factor. For example, the investigator could identify factors such as wealth,

professional success, family support, social relationships, health, and so forth.

Therefore, happiness would be a state with several dimensions and each dimension

can be assigned a score. If the factors are assumed to be independent, a total score for

happiness can be compounded by adding up the partial scores of each dimension.

There are many other ways of developing clinical questionnaires but factor

analysis, being a formal statistical method, deserves an explanation in this book and

we will discuss briefly the underpinnings of the method in the next section.

However, once a questionnaire is developed it needs to be validated, and the process

of validation is as important as the development. Therefore, we will also cover

methods of validation.

10.2 Factor analysis

Assume that we want to develop a scale to measure, say, happiness and that we

asked 15 random subjects to respond to five questions presented as 10-point Likert

scales. Usually at least 100 subjects will be necessary for the initial development of
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a questionnaire, but for illustrative purposes we will consider only 15. We will name

those questions x1 to x5. Suppose the questions were formulated as follows: x1, I

have a good deal of energy; x2, I feel in good health; x3, I have a positive influence

on other people; x4, people do not find me attractive; and x5, I am optimistic about

the future. Subjects were requested to state their degree of agreement with each

sentence on a 0 (totally disagree) to 9 (totally agree) Likert scale.

Figure 10.1 shows our artificial dataset along with the five questions and a

correlation matrix displaying the correlation coefficients between the five variables.

On a first inspection of the correlation matrix we find high correlation coefficients

between x1 and x2, and between x3 and x4, x3 and x5, and x4 and x5. Therefore,

there seems to be two patterns of relationships in the data, one involving variables

x1 and x2, the other variables x3, x4, and x5. Of course, these two patterns were

easily identified with only a correlation matrix because there are just five variables

and their values were selected for this illustration to give clear relationships. On a

real dataset with several dozen variables it will be much harder to discern patterns

of relationships between variables through a correlation matrix. This is where factor

analysis comes into play.

Factor analysis usually begins by standardizing the variables, that is, by

transforming each one into a variable with mean 0 and variance 1. This is

accomplished by taking the difference of each value to its mean and dividing by the

standard deviation.

In order to understand factor analysis we will need to stretch our imagination to

great lengths. In our example, we will need to imagine a space in 15 dimensions

with 15 coordinate axes at right angles. Each axis represents one subject in the

sample and each variable is defined in this space as a point located according to the

values observed in each subject. Of course, this is impossible to illustrate in two

dimensions, so we will imagine those points projected onto the first two

observations. The variables would be located as shown in Figure 10.2.

Each axis corresponds to a subject and the points to each variable of the

questionnaire.

Subj.  x1  x2  x3  x4  x5 
   1      5    6    2    8    0 
   2      9    9    2    4    5 
   3      9    8    7    3    9 
   4      1    3    8    0    6 
   5      0    3    3    5    2 
   6      3    4    7    2    7 
   7      5    6    0    6    0 
   8      1    1    7    2    8 
   9      6    6    3    6    5 
 10      7    6    9    3    9 
 11      7    3    5    4    8 
 12      5    5    7    0    7 
 13      0    0    0    6    3 
 14      6    6    8    0    7 
 15      5    4    3    9    3 

           x1       x2       x3       x4      x5 

 x1     1.00 
 x2     0.85    1.00 
 x3     0.11    0.05    1.00 
 x4     0.04    0.00   -0.79    1.00 
 x5     0.30    0.05    0.84   -0.70   1.00 

Correlation matrix 

x1-I have a great deal of energy 
x2-I feel in good health 
x3-I have a positive influence on other people 
x4-people do not find me attractive 
x5-I am optimistic about the future 

Figure 10.1 Dataset and correlation matrix of the factor analysis example.
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The first factor will be a straight line running through the center of the cloud of

points corresponding to the x variables, in the same way that a least squares line

runs through the center of a cloud of points. As all variables were previously

centered, they all have zero mean, and thus the first factor must pass through the

origin. Thus, the first factor would be positioned as is shown in Figure 10.3.

The projections of the five variables on the factor, represented by the dashed

lines in Figure 10.3, define on that factor quantities called the factor loadings. The

factor loadings are the correlation coefficients between the variables and the factor.

Therefore, the square of a factor loading represent the proportion of the variance of

a variable that is explained by the factor. We can see in Figure 10.3 that variables

x3, x4, and x5 load high, and variables x1 and x2 load low, on the first factor.

Factor analysis proceeds by placing the second factor through the origin and at a

right angle from the first factor. By placing the second factor at a right angle from

the first, the two factors are made uncorrelated. This is shown in Figure 10.4. Again,

try to imagine that Figure 10.4 represents the projection in a two-dimensional space

of the 15 coordinate axes. Now variables x1 and x2 load high on factor 2, while

variables x3, x4, and x5 load low on that factor.

The third factor is then positioned through the origin and at right angles from

the first two factors, and loadings on this factor are determined. The process goes on

until as many factors as variables are positioned.

The next step in the analysis is to establish how many factors should be retained.

Intuition tells us that the important factors are those that explain most of the

variance in the questionnaire items. As the squared factor loading represents the

proportion of the variance of a questionnaire item that is explained by a factor, and

as, due to the standardization of all the questionnaire items, all items have variance

1, if we sum all the squared factor loadings on a factor we will obtain a measure of

x1 
x2 

x3 

x4 

x5 

subject 1 

su
bj

ec
t 2

 

Figure 10.2 Data points representing the value of the questionnaire items defined

by the observed values in each subject.
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Factor 1

Figure 10.3 Factor analysis. The first factor is positioned through the center of

the points representing the questionnaire items The projection of each variable

on the factor defines the factor loading of a variable on the factor and is a measure

of the correlation between each item and the factor.

Factor 1

Factor 2

Figure 10.4 Factor analysis. The second factor is positioned at a right angle from

the first factor, and is therefore uncorrelated. The projections of the questionnaire

items on the second factor are represented by the dashed lines.
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the variance in all the questionnaire items that is explained by the given factor. This

quantity is called the eigenvalue and it is often used to suggest the number of

factors that should be retained.

10.3 Interpretation of factor analysis

We will now look at the results of the factor analysis of the data in Figure 10.1. We

begin by inspecting the eigenvalues of each of the factors to decide how many

factors should be retained. Figure 10.5 presents the results of the analysis.

The table shows, for each factor, its eigenvalue, the difference between each

eigenvalue and the eigenvalue of the next factor, the proportion of the variance in all

questionnaire items that is explained by each factor (obtained by dividing each

eigenvalue by the sum of all eigenvalues), and the cumulative proportion of the

variance explained by the factors up to and including a given factor.

A commonly accepted rule is to retain only those factors that explain at least as

much variance as a single variable. As all variables have been standardized and

have variance 1, a factor with an eigenvalue less than 1 does not explain the data

better than a single variable and is therefore irrelevant. This is called the Kaiser

criterion. By the same reasoning, an alternative rule is to retain those factors

explaining the same proportion of the total variance as an average single item. As

there are five items in the example, each one accounts on average for 20% of the

total variance, and thus those factors explaining more than 20% of the variance

should be retained.

Another commonly used method is the scree plot shown in Figure 10.6. The

scree plot is a graph of the factors and the corresponding eigenvalues. When a factor

analysis is successful, the eigenvalues decrease progressively and then plateau when

factors explain only small amounts of the total variance. The factors to be retained

are the ones just before the eigenvalues plateau.

In this example it seems rather obvious that only the first two factors should be

retained. Both have eigenvalues greater than 1 and they account for about 98.5% of

the total variance. The third factor explains less than 5% of the total variance, which

is much less than the variance of the average item.

 ------------------------------------------------------------------- 
      Factor  |   Eigenvalue   Difference   Proportion   Cumulative 
 -------------+----------------------------------------------------- 
     Factor1  |      2.43041      0.73335       0.5800       0.5800 
     Factor2  |      1.69706      1.50254       0.4050       0.9850 
     Factor3  |      0.19452      0.23756       0.0464       1.0314 
     Factor4  |     -0.04304      0.04553      -0.0103       1.0211 
     Factor5  |     -0.08856            .      -0.0211       1.0000 
 ------------------------------------------------------------------- 
Figure 10.5 Factor analysis. Eigenvalues for the five factors. The eigenvalue

represents the variance in all the questionnaire items that is explained by each

factor.
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Once we have decided on the number of factors to be retained we then look at

the factor loadings of the questionnaire items on those factors. Figure 10.7 shows

the factor loadings of the items x1 to x5 on the first and second factors, as well as a

statistic called uniqueness. The uniqueness of a variable is the proportion of the

variance of the variable that is not explained by the factors. A complementary

measure is the communality, that is, the proportion of the variance of a variable

that is explained by the factors. The latter quantity is obtained for each variable by

summing the squared factor loadings for all factors. This quantity is analogous to R2

in multiple regression and is equal to one minus the uniqueness. In the table of

Figure 10.7 we can see that variable x4 is not well explained by the two factors,

which account only for about 70% of its variance, while over 85% of the variance of

any other items is explained by the factors. This information may help us refine our

model by rephrasing the item and applying the questionnaire again, or sometimes

by just dropping that item.
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Figure 10.6 Scree plot.

----------------------------------------------- 
  Variable |  Factor1   Factor2 |   Uniqueness  
-----------+--------------------+-------------- 
        x1 |   0.3702    0.8736 |      0.0998   
        x2 |   0.2557    0.8799 |      0.1604   
        x3 |   0.8847   -0.2274 |      0.1656   
        x4 |  -0.7808    0.3068 |      0.2962   
        x5 |   0.9141   -0.1179 |      0.1505   
----------------------------------------------- 

Figure 10.7 Factor loadings of the item questionnaires on the two retained

factors.
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Looking now at the factor loadings, we conclude that items x3, x4, and x5 load

high on the first factor, and items x1 and x2 load high on the second factor. We can

interpret the meaning of the variables represented by the factors from the items

most correlated with them. In this example, the first factor seems to represent a

dimension of happiness that could be labeled self-esteem and the second factor

another dimension that could be called physical fitness. Item x4 has a negative

factor loading because its values are in reverse order of the other items, that is,

higher scores mean more negative feelings.

As a general rule, items with factor loadings of less than 0.30 are disregarded

because they are poorly correlated with the factor. In our example, the factor

loading for item x1 on the first factor is 0.37 and, were it a bit higher, we would be

in trouble deciding whether it should be a composite of the first dimension or the

second. A technique that may help us understand which items are related to which

factor is factor rotation.

10.4 Factor rotation

Factor rotation is a technique for improving the interpretation of factors. As shown

in Figure 10.8, the factors can be rotated around the origin so that those items that

loaded high on a factor will have higher loadings and those that loaded low will

have loadings near zero. This may offer a clearer insight into which items correlate

with each factor and, therefore, may improve interpretability of the meaning of

the factors.

The rotation illustrated in Figure 10.8 is an orthogonal rotation and the method

used is known as varimax rotation, one of several methods of orthogonal rotation.

Varimax rotation maximizes the sum of the variances of the squared loadings,

Rotated Factor 1

R
o

tated
 Facto

r 2

Figure 10.8 Orthogonal rotation of the factors shown in Figure 10.4.
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resulting in high loadings for a few variables, and the remainder will load near zero.

It is named orthogonal because the factors are kept at right angles to each other,

meaning that the rotated factors are also uncorrelated. Depending of the rotation,

the first factor may no longer explain the largest amount of variation, as is the case

in unrotated factor analysis. The factor loadings, eigenvalues, and proportion of

variance explained will also change, but not the uniqueness.

If after an orthogonal rotation the pattern of correlations is still not meaningful,

an oblique rotation may help. In an oblique rotation the factors are rotated indi-

vidually in order to obtain an optimal solution and they may no longer be

orthogonal. Figure 10.9 shows an oblique rotation with the method known as

promax rotation.

The main distinction between the two methods is that in oblique rotation the

factors may no longer be uncorrelated. This may be seen as a limitation or an

improvement, depending on the objectives of the analysis. If the purpose of the

research is to develop an instrument for measuring a given construct which

produces a single score, then the orthogonal rotation may be preferable because a

composite score obtained by summing the individual dimensions will be easier to

interpret. If the primary purpose is to understand which dimensions exist and how

they interrelate, then an oblique rotation will fit the data better and will provide

additional information on the relationships among factors. Oblique rotations are

also adequate when only the scores of the subscales measuring distinct dimensions

are relevant and no single score for the construct is sought.

Figure 10.10 shows the factor loadings after orthogonal and oblique rotation of

the two retained factors in our example. In this case there are no dramatic changes

in the factor loadings and, as seen in Figure 10.9, after an oblique rotation the

factors are almost at right angles. This means that the two dimensions are indeed

uncorrelated.

 Rotated Factor 1

R
o

tated
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r 2

Figure 10.9 Oblique rotation of the factors shown in Figure 10.4.
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Up to now we have identified two important dimensions and the items related to

each of them. The next step is to use these results to develop a scoring system for

happiness.

10.5 Factor scores

We can think of a factor as a new variable, one that cannot be observed but whose

values are obtained from a linear combination of the variables associated with it.

We call this a latent variable. Therefore, in this example we could compute for

each subject how much the happiness score was, as well as how much the subject

scored on the self-esteem and the physical fitness dimensions.

A simple method is to sum the values of the questionnaire items of a given

subject weighted by the loading of each variable on a given factor, thereby giving

more weight to the variables most correlated with the factor. As the variables

usually have different distributions, it is convenient to standardize them to mean

0 and variance 1. This is called the factor score for a given factor. For example,

the standardized values of items x1 to x5 in subject 1 in the dataset of Figure 10.1

are, respectively, 0.1335, 0.5465, �0.9007, 1.4631, and �1.7355. Therefore, the

factor score of this subject for factor 1 (self-esteem) is the sum of (0.1335�
0.3702), (0.5465� 0.2557), (�0.9007� 0.8847), (1.4631� (�0.7808)), and

(�1.7355� 0.9141), which is equal to �3.3365. Likewise, the factor score for

factor 2 (physical fitness) is the sum of (0.1335� 0.8736), (0.5465� 0.8799),

(�0.9007� (�0.2274)), (1.4631� 0.3068), and (�1.7355� (�0.1179)), which is

equal to 1.4558. The factor scores should also be standardized so that their means

and variances are the same. Then, the value of the standardized factor score of

each subject represents the Z-score, that is, the departure of the factor score from

the sample mean expressed as standard deviations. For the first subject in the

dataset, the standardized factor score for self-esteem is �1.3249 and for physical

fitness 0.8275. This subject has below-average self-esteem and above-average

physical fitness. A score for happiness can be obtained by summing, or averaging,

the standardized factor scores of the retained factors.

There are alternate methods for obtaining factor scores which are model based,

providing more refined population estimates, like the least squares regression

Orthogonal rotation 
--------------------------------- 
   Variable |  Factor1   Factor2 
------------+-------------------- 
         x1 |   0.1013    0.9433 
         x2 |  -0.0101    0.9163 
         x3 |   0.9126    0.0386 
         x4 |  -0.8362    0.0675 
         x5 |   0.9091    0.1520 
--------------------------------- 

Oblique rotation 
--------------------------------- 
   Variable |  Factor1   Factor2 
------------+-------------------- 
         x1 |   0.0638    0.9412 
         x2 |  -0.0469    0.9192 
         x3 |   0.9138   -0.0036 
         x4 |  -0.8413    0.1064 
         x5 |   0.9056    0.1102 
--------------------------------- 

Figure 10.10 Factor loadings after orthogonal (left) and oblique rotation (right).
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method and the Bartlett method. Whatever the method used, standardized factor

scores can be used as a variable in hypothesis testing and in statistical modeling.

Particularly in multiple regression, factor analysis may be useful by reducing a large

number of explanatory variables to a few factors, thereby decreasing the sample

size requirements and, possibly, simplifying the interpretation of the results.

However, factor analysis is not commonly used in medical research for several

reasons. It has already been mentioned that the number of retained factors and their

interpretation is highly subjective, but there are still other problems. There are

several methods for extracting the factors, there are several methods for rotation of

the factors, and there are several methods for obtaining factor scores, each method

giving different results. These features of factor analysis open the door to the

possibility of experimenting with several methods until the results are in agreement

with the prior beliefs and expectations of the researcher. Furthermore, factor

analysis assumes that the variables are in an interval scale (although it is often used

with ordinal variables), that their distribution is normal, and that they are linearly

related to each other.

Nevertheless, factor analysis may be a useful technique for understanding the

structure of the data and the interrelationships between a large set of variables, and

this may be hypotheses generating. The method described in these sections is a

type of factor analysis called exploratory factor analysis and the factoring

approach is called common factor analysis or principal factor analysis. The

other type is called confirmatory factor analysis and the difference is that in this

case the method is used to verify whether the number of factors and the loadings of

the variables on each factor correspond to what was expected based on an

underlying theory.

10.6 Reliability

Many instruments used in clinical research are based on items scored on Likert

scales and developed using factor analysis. As stated above, factor analysis is used

as a data reduction technique and, for that purpose, commonly used criteria include

retaining only factors with eigenvalues greater than 1 and dropping items that load

less than 0.30 on all factors. Items displaying high uniqueness, which therefore are

poorly related to the factor solution, may also be deleted. Factor analysis may also

uncover hidden dimensions in the items, allowing the creation of multi-dimensional

scales in the case where no underlying theory has already proposed those

dimensions. If a theory exists, or if previous research has already suggested some

dimensions, then factor analysis will help identify the items related to each

dimension specified by theory or in the literature.

In clinical questionnaires based on Likert scales, the total score is usually

obtained by the simple sum of the values of all items. If the scale is multi-

dimensional and dimensions are uncorrelated, partial scores for each dimension, or

subscale, are obtained in the same way and a composite score is obtained from the

sum of the partial scores. Thus, scores are usually obtained giving the same weight
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to all items, regardless of their loadings on the factors. This approach is based on

classical test theory and is supported by the assumption in Likert scales that all

items are considered to be replicates of each other. In contrast, modern test theory
(also called item response theory) takes into account the importance of each

individual item when forming the scores. However, the latter approach is rather

complex for multi-dimensional scales.

Once an instrument is developed, it must be evaluated and possibly further

improved by analyzing its reliability. Reliability is the ability of a measurement to

give consistent results when measuring a construct in different persons, in different

situations, and at different times. Basically, a reliable instrument is one that is free

from error.

Reliability can be assessed with several statistics, the most popular being

Cronbach’s alpha. This statistic is widely considered to be a measure of the

internal consistency of an instrument, that is, to what degree the different items on

an instrument designed to measure a certain construct produce similar scores. As we

have seen, the underlying assumption in instruments measuring a single dimension

and based on Likert scales is that all items are measuring the same construct on the

same scale, and this is what justifies creating a score based on the average, or the

sum, of all the items. If this assumption holds, then all items should be strongly

correlated, and the greater the correlation between the items, the greater the internal

consistency of the instrument.

Cronbach’s alpha is a measure of the degree of correlation of the items in a

questionnaire. As all items are on the same scale, when they are all measuring

exactly the same construct, then the items are identical variables and Cronbach’s

alpha will have the value 1. Conversely, when each item is measuring a different

construct, then the items have zero correlation between them and Cronbach’s

alpha will have the value 0. Therefore, Cronbach’s alpha is a scale between 0

and 1 that evaluates the degree of correlation between the items in a

questionnaire; the closer it is to 1, the greater the confidence that all items are

measuring the same quantity, that is, that all the items produce the same scores.

Cronbach’s alpha is thus a measure of internal consistency reliability of a

questionnaire.

Cronbach’s alpha is a statistic is based on the properties of variances. We have

already seen that, when we sum k independent random variables, the variance

of the resulting variable is equal to the sum of the variances of the k variables.

For example, for three variables this can be expressed as

varðyÞ ¼ varðx1Þ þ varðx2Þ þ varðx3Þ
If the variables are not independent, the variance of the resulting variable is not

equal to the simple sum of the variances. It will be equal to

varðyÞ ¼ varðx1Þ þ varðx2Þ þ varðx3Þ þ covðx1; x2Þ þ covðx2; x1Þ þ covðx1; x3Þ
þ covðx3; x1Þ þ covðx2; x3Þ þ covðx3; x2Þ
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As cov(xi, xj)¼ cov(xj, xi), the expression can be simplified to

varðyÞ ¼ varðx1Þ þ varðx2Þ þ varðx3Þ þ 2covðx1; x2Þ þ 2covðx1; x3Þ
þ 2covðx2; x3Þ

We can write this expression more generally as

varðyÞ ¼
X

varðxiÞ þ 2
X

covðxi; xjÞ
with i different from j.

The terms cov(xi, xj) are the covariance of two variables, a measure of how

two variables change together. If two variables are independent, their

covariance is zero, and if they are identical their covariance is equal to their

common variance.

Therefore, if each item in a questionnaire is measuring a different construct,

then they are all independent and the covariance of all pairs of items will be

zero. Conversely, if all items are identical, then the covariance of all pairs of

items are the same, and equal to the common variance because the covariance

of two identical variables is equal to their common variance, that is, cov(x,

x)¼ var(x).

We can easily find the value of 2
P

cov(xi, xj) in the above expression. If we

subtract the sum of the variances of the items in the questionnaire from the

variance of the total score of the questionnaire, the result is twice the sum of the

covariances between all the items in the questionnaire.

For example, consider our happiness questionnaire again. Item 4 of the

questionnaire was reversed, so we need to reverse its values so that all items

give greater scores to positive attitudes. If we compute the total score of the

questionnaire in the 15 subjects, the variance of the total score is 103.11. The

sum of the variances of the individual items x1 to x5 in those 15 subjects is

8.97þ 5.95þ 9.21þ 7.98þ 9.21¼ 41.32. The difference 103.11� 41.32¼
61.79 is thus the added variance of the total score that results from the

intercorrelation of the items. This quantity corresponds to the term 2
P

cov(xi,

xj) in the expression above.

We would get the same result by obtaining the covariance matrix and

summing all the off-diagonal elements of the matrix. The covariance matrix

displays the covariance of all combinations in a set of variables. Figure 10.11

shows the covariance matrix of the five items in our questionnaire.

Our questionnaire items are correlated, otherwise their covariances would

be zero and we would get a value of 0 for 2
P

cov(xi, xj). The value 41.32 is a

measure of the intercorrelation of the questionnaire items, but just by looking at

that value we have no clue whether it means a large or a small intercorrelation.

So the question now is how to interpret that value. We may approach this

issue by constructing an index that ranges from 0 (no correlation between the

questionnaire items) to 1 (identity of all questionnaire items). For this, we will

need to know what the variance of the total score would be if all items were

perfectly correlated.
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If all items were perfectly intercorrelated but with different distributions,

the variance of the total score obtained with the sum of the k questionnaire

items would be equal to the sum of the variances of the k items (which are the

same as the values in the diagonal of the covariance matrix) because the

covariance of two identical variables is equal to their common variance, plus

the sum of all the off-diagonal covariances.

In any matrix the number of off-diagonal elements is k2� k and the total

number of elements in the matrix is k2. Thus, the proportion of off-diagonal

elements in a matrix is (k2� k)/k2, which can be written as k(k� 1)/k2 and

simplified to (k� 1)/k.

Thus, if all the items are perfectly correlated, the sum of the off-diagonal

covariances, 2
P

cov(xi, xj), must account for (k� 1)/k of the variance of the

total score, S2T. So, when the items are perfectly correlated, if we divide 2
P

cov

(xi, xj) by (k� 1)/k we should get a quantity equal to S2T. Therefore, the ratio of

the two quantities

2
P

covðxi; xjÞ
ðk � 1Þ=k and S2T

for i different from j, will be equal to 1.

When the correlations between the items are less than perfect, the sum of

the off-diagonal covariances will decrease and consequently the ratio of the

two quantities will be less than 1. When all the items are uncorrelated, their

covariances, and their sum, are zero and the ratio of the two quantities will be

zero. This index will thus inform us about the degree of inter-item correlation:

the greater their correlation, the closer to 1 the index will be.

Accordingly, the procedure for computing this index is as follows. First, we

obtain the value of 2
P

cov(xi, xj), for i different from j, that is, the sum of all

off-diagonal covariances, by subtracting the sum of the k item variances, S2i ,

from the variance of the total score. In other words, we obtain the term 2
P

cov
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Figure 10.11 Covariance matrix. The diagonal elements are shaded.
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(xi, xj) from the difference S2T �
P

S2i . If all items are perfectly correlated this

quantity must correspond to (k� 1)/k of the variance of the total score. So we

obtain the estimate of the variance of the total score under the assumption that

all items are perfectly intercorrelated by

S2T �
P

S2i
ðk � 1Þ=k

which can be written as

k

k � 1
� S2T �

X
S2i

� �

To obtain the index we divide the result by the variance of the total score:

a ¼ k

k � 1
� S2T �

P
S2i

S2T

This simplifies to

a ¼ k

k � 1
� 1�

P
S2i

S2T

� �

which is the usual formula of Cronbach’s alpha.

In our example of the happiness questionnaire
P

S2i ¼ 41:32 and

S2T ¼ 103:11, so Cronbach’s alpha for that questionnaire is

a ¼ 5

4
� 1� 41:32

103:11

� �
¼ 0:75

It is a matter of considerable debate what the minimum value of Cronbach’s

alpha should be and that indicates an adequate internal consistency reliability. It is

widely assumed that a questionnaire intended for use in research should have a

value of Cronbach’s alpha greater than 0.80, while some advocate that it should be

as high as 0.90.

However, it must be noted that, as Cronbach’s alpha measures the degree of

inter-item correlation, its value will be inflated if a questionnaire contains several

items that are essentially identical, such as rephrased questions. It will also increase

with the number of items in the questionnaire. Figure 10.12 simulates question-

naires composed of independent items and shows how Cronbach’s alpha increases

with the number of items in the questionnaire and with the proportion of identical

items in the questionnaire, leaving the remaining items uncorrelated.

Therefore, before claims are made about the internal consistency reliability of a

questionnaire, it is important to assert that the high alpha coefficient has not been

inflated by eventually redundant items. A set of statistics may be helpful in this

regard by giving some insight on whether the questionnaire has the properties

expected of a measuring instrument. In one-dimensional instruments, as well as for
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each subscale of a multi-dimensional instrument, inter-item correlations should not

be too high, say, greater than 0.70, otherwise the items could be redundant. On the

other hand, inter-item correlations should not be too low, say, less than 0.30, as this

may indicate that they are measuring something different. These situations can be

readily identified by inspection of the correlation matrix of all items.

Another property expected of an adequate measuring instrument is for each item

to have a high correlation with the total score in one-dimensional instruments, and

with its own subscale score in multi-dimensional instruments. Therefore, the

correlation between each item and the total score in one-dimensional instruments,

called the item-test correlation, or in multi-dimensional instruments the correla-

tion of each item with its own subscale score, called the item-to-own-dimension

correlation, should be high. On the other hand, as each item should be measuring a

different facet of a construct, its correlation with a total score formed with the

remaining items of the questionnaire should be moderately low. This is called the

item-rest correlation. Furthermore, in multi-dimensional questionnaires, as each

dimension is usually assumed to be independent, the correlation between subscale

scores should be moderately low. This can be verified by inspecting the

interdimension correlation matrix. Figure 10.13 shows some of these statistics

for our example of the happiness scale. Additionally, the last column shows the

alpha coefficient of a scale formed by excluding the referenced item. Thus, if item

x2 was dropped, the alpha coefficient would increase from 0.75 to 0.77, suggesting

that item x2 is not adequately measuring the construct, which is further suggested

by its low (0.55) item-test correlation.

Accordingly, when reporting a new clinical questionnaire, at least the following

statistics should be presented: in one-dimensional scales, Cronbach’s alpha of the

full questionnaire, median item-test correlation, median item-rest correlation,
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Figure 10.12 Relationship of Cronbach’s alpha with the number of k uncorre-

lated items in a questionnaire and the proportion of identical items.
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median inter-item correlation, and median Cronbach’s alpha excluding one item in

turn; and in multi-dimensional scales, Cronbach’s alpha of each dimension, median

item-to-own-dimension correlation, median item-rest correlation within each

subscale, median inter-item correlation within each dimension, and the interdimen-

sion correlation matrix.

It should be noted that we used the data in our example only for illustrative

purposes. In a real setting, internal consistency reliability should be assessed in studies

on a different sample with a much larger size, usually greater than 400 subjects.

10.7 Concordance

We have discussed a widely used method for the evaluation of internal consistency

reliability, but other types of reliability also need to be evaluated. A good instrument

is supposed to produce consistent scores between two applications in the same

subject. This is called test–retest reliability. It is evaluated by comparing the

scores obtained in the same subjects when the questionnaire is administered at two

different moments in time.

Test–retest reliability has some issues, though. First, the second application of

an instrument must occur only after an elapsed period of time, allowing for the

subjects to forget their answers on the first administration of the questionnaire.

Second, the construct that the instrument is measuring should be relatively stable

over the span of time between the two administrations.

At first glance, one might think that a measure of test–retest reliability could be

obtained by computing the correlation coefficient between the two measurements.

Thus, Pearson’s correlation coefficient r or, perhaps more appropriately, the non-

parametric equivalent Spearman’s correlation coefficient r (rho) given that the

scores are in an ordinal scale, would provide an easily interpretable quantity for

describing reliability.

This would not be appropriate, though, as Figure 10.14 shows. The figure

displays three situations where the correlation coefficient is 1, but only in the left

graph are the two measurements in the same subjects equal. In the middle graph the

Item       
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+
+
-
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Item-rest
correlation 
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0.64
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0.69

Average
Inter-item
correlation

0.40 
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0.31
0.37
0.29

0.34

Alpha 

0.73
0.77
0.64
0.70
0.62

0.75

Figure 10.13 Item analysis.
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first score is systematically greater than the second by a fixed amount, and in the

right graph the first score is systematically higher than the second by a fixed

proportion. In these latter two cases the instrument is unreliable, although the

correlation coefficient between the two measurements is 1.

There is another reason why the correlation coefficient is not appropriate for the

analysis of test–retest data. The correlation coefficient assumes an order in the

measurements. In that case, one of the measurements is labeled x and the other y.

When there are replicates of the same measurement, as is the case in test–retest

studies, there is no way of telling which is x and which is y.

Therefore, the correlation coefficients mentioned above are not adequate for

measuring test–retest reliability. The intraclass correlation coefficient method con-

veniently addresses those two issues and is the most commonly used method of analysis

of test–retest data. The intraclass correlation coefficient ranges from 0 to 1, higher

values indicating greater concordance between replicates. Avalue of at least 0.7 for the

intraclass correlation coefficient is usually considered as indicative of adequate test–

retest reliability. As it is expected that a questionnaire has high test–retest reliability,

studies aimed at its demonstration require sample sizes of only 15–20 subjects.

The intraclass correlation coefficient estimates how much of the variance in the

score of a questionnaire administered to the same subjects on two occasions is

due to the variability of the scores between the two administrations. If the scores

completely agree, the variance of the score between the two administrations will

be zero and the coefficient will be 1. As the concordance between administra-

tions decreases, that variance will increase and the coefficient will decrease.

The total variance of the score is due, on one hand, to the variance due to

differences in scores between subjects, s2
B, and, on the other hand, to the

variance due to differences in scores within the same subjects, s2
W. Therefore, if

we want to evaluate the magnitude of s2
W we can divide s2

B by the sum s2
B þ s2

W.

If the scores given by the subjects are totally concordant, s2
W will be zero and the

ratio will be one. The lesser the concordance between administrations, the lesser

the ratio will be.
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Figure 10.14 Three situations with equal correlation coefficients but different

reliability.
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The quantities s2
B and s2

W can be estimated from an anova table, which will

give us the between-subjects and the within-subjects mean squares. The within-

subjects mean square represents the variation from one administration to the

other, that is, s2
W. The between-subjects mean square is the sum of the between-

subjects variance, s2
B, times the two administrations, plus the variance of the

two administrations in the same subject, s2
W. Thus, the between-subjects mean

square estimates 2s2
B þ s2

W.

Therefore, the difference of the between-subjects mean square and from

the within-subjects mean square is ð2s2
B þ s2

WÞ � s2
W ¼ 2s2

B. The sum of the

between-subjects mean square and the within-subjects mean square is

ð2s2
B þ s2

WÞ þ s2
W ¼ 2s2

B þ 2s2
W.

If we now divide the two quantities we will get the intraclass correlation

coefficient (ICC). Representing symbolically what was just said, the population

intraclass correlation coefficient is

ICC ¼ s2
W

s2
W þ s2

B

which can be estimated by using the components of variance in the anova

table by

ICC� ¼ MSB �MSW

MSB þMSW

Returning to our example of the happiness questionnaire, suppose that the

questionnaire was retested in the first four subjects and that the results were as

shown in Figure 10.15.

The estimate of the intraclass correlation coefficient is computed from

the components of variance obtained with anova as (109.46� 21.38)/

(109.46þ 21.38)¼ 0.67.
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Figure 10.15 Illustration of the results of a test–retest study with anova table.
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Sometimes, clinical questionnaires are not based on Likert scales and are not

developed with factor analysis. Such instruments are often used for the

diagnosis, grading, or prediction of a condition or outcome. For example, we

saw previously that risk stratification instruments could be developed with

logistic regression. Some clinical questionnaires used for classification or

prediction are even developed without resorting to any statistical methods and

consist of a combination of items with high sensitivity and items with high

specificity, with small weights given to the former and large weights to the latter.

Typically, those instruments are not meant for self-administration; it is the

investigator who scores the questionnaire. As different researchers may have

different criteria for scoring each item, the scores are subject to inter-observer

variability. Therefore, instruments administered by a third-person should be

evaluated for inter-rater reliability.

Consider a dichotomous item, say the presence of lung metastasis. Two raters

evaluating the chest CT scan of a patient may not always agree as to the presence or

absence of metastases. We would be led to think that an adequate measure of inter-

rater reliability would be the percentage agreement between the raters.

This could be misleading, though. The reason is that, if the raters were guessing

at random whether a patient has lung metastases, on a number of occasions, which

could be significant, they might agree by chance alone. Therefore, chance

agreement inflates the true degree of concordance in the ratings.

Cohen’s kappa is a measure of the agreement between two raters that accounts

for agreement occurring by chance. This statistic is used only for items in a nominal

scale. A test of the null hypothesis that the true kappa is different from 0 is also

available, but it only tells us that some degree of concordance exists, not whether

the inter-rater agreement is within a value suitable for research. Indicative cut-offs

for kappa values commonly accepted are <0.2 poor, 0.2–0.4 fair, 0.4–0.6 moderate,

0.6–0.8 good, and >0.8 excellent agreement.

Cohen’s kappa calculates the difference between the observed agreement and

the agreement expected purely by chance, and creates an index with a

maximum of 1. If an item has k classes, a contingency table of the ratings of

two observers will have k� k cells and the observed agreement, O, is the total

number of observations where the two raters agree, that is, the sum of the

diagonal cells of the table running from top left to lower right. The agreement

expected by chance alone, E, can be estimated from the row and column

marginal totals as follows. For each cell in the diagonal, the expected number

of observations is the product of the row total and the column total, divided by

the total sample size, n. Then, the agreement expected by chance alone is

discounted from the observed agreement by subtracting one from the other, that

is, O�E. To create an index with a maximum of 1, we divide that result by the

maximum possible agreement, discounting chance agreement. The maximum

possible agreement is verified when all n observations lie on the diagonal and

so the maximum possible agreement discounting chance agreement is n�E.
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For example, imagine an inter-rater reliability study of two raters classifying

cancer patients into four grades according to the patients’ response to

chemotherapy: complete response (CR), partial response (PR), stable disease

(SD), and disease progression (DP). The results are presented in Figure 10.16.

The observed agreement between raters, O, is 9þ 13þ 12þ 7¼ 41. The

agreement expected by chance alone, E, is the sum of (10� 12/50), (17� 15/

50), (15� 14/50), and (8� 9/50), which is equal to 13.14. Thus, there were

41� 13.14¼ 27.86 more concordant observations than expected by chance

alone. The maximum number of concordant observations is 50, the total sample

size n, and discounting those due to chance we get 50� 13.14¼ 36.86.

Therefore, the observed agreement is 27.86/36.86¼ 0.76 of the maximum

possible agreement. This is the kappa statistic.

When the item classes are ordered, the disagreement is less serious if the

raters differ by only one class than if they differ by two or more classes.

Therefore, the degree of disagreement should be included in the calculations by

assigning weights to that degree. This is known as the weighted kappa and its

interpretation is analogous to the intraclass correlation coefficient.
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Figure 10.16 Cohen’s kappa.
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We could consider the response to chemotherapy to be ordered from

complete response to disease progression, representing decreasing success of

the therapy. Thus, there would be lesser disagreement if a patient classified as

complete responder by one rater were classified by the other as partial response

than as disease progression, and we want to incorporate this judgment into the

calculations. Therefore, the weighted kappa will be used in the analysis

(Figure 10.17).

Weights are usually made equally spaced from 0 (maximum disagreement)

to 1 (maximum agreement). As there are four classes, the weights will be

multiples of 1/3¼ 0.33. These weights will be multiplied by the observed and

expected number of observations at each level of disagreement. The calculation

of the weighted kappa statistic is then the same as for Cohen’s kappa.

Using the data from the table in Figure 10.16, for zero disagreements there

were 41 observations and the expected number by chance alone is 13.14. The

weight for this level is 1, so the weighted observed and weighted expected

numbers are also 41 and 13.14. For disagreements in one class, there were
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1þ 3þ 1þ 1þ 2þ 1¼ 9 observations. The number expected by chance is

obtained from the respective row and column totals: (10� 15þ 17� 12þ 17

� 14þ 15� 15þ 15� 9þ 8� 14)/50¼ 21.28. The weight for this level of

disagreement is 0.66, so the weighted observed and weighted expected

numbers are 9� 0.66¼ 5.94 and 21.28� 0.66¼ 14.04. For disagreements

separated by two classes there were zero observations. The number expected

by chance is 10� 14þ 17� 9þ 15� 12¼ 9.46 and as the weight for a

departure of two classes is 0.33, the weighted expected number is

9.46� 0.33¼ 3.12. For a discrepancy in rating of three classes there were zero

observations and as the weight for this level of disagreement is 0, so are the

weighted observed and weighted expected numbers.

Summing all the weighted observed numbers we get 41þ 5.94¼ 46.94, and

summing all the weighted expected numbers we get 13.14þ 14.04þ 3.12

¼ 30.3. The difference between the weighted observed and weighted expected

numbers is thus 46.94� 30.3¼ 16.64. The maximum number of concordant

observations discounting the number expected by chance is 50� 30.3¼ 19.7.

The weighted kappa is thus 16.64/19.7¼ 0.84.

Reliability can also be measured when there are more than two raters by

using a different method called Fleiss’s kappa. This statistic is used only with

nominal items.

10.8 Validity

Reliability is not synonymous with validity. Validity is the property of an

instrument of actually measuring what it is intended to measure. An instrument

may produce consistent scores but may be measuring something different, or may

be producing biased readings. The two concepts are linked, though. For example, a

scale that always gives the same weight regardless of what it is weighing has high

reliability but no validity. A calibrated scale with a large measurement error has low

reliability and also low validity. Reliability is thus considered a sine qua non

condition for validity and therefore the first step in the evaluation of the validity of a

questionnaire should be an assessment of its reliability. For the reasons presented

above, claiming that an instrument is reliable does not mean that it is valid and

proof of validity must be produced.

Validity is usually evaluated for two main types. Proof of construct validity

is obtained by showing that a questionnaire fits the underlying theory. Construct

validity has two components, content validity and convergent validity. Content

validity is a thorough examination of the content of the questionnaire to

evaluate whether the relevant facets of the construct’s domain are accounted for

in the questionnaire. For example, our artificial happiness questionnaire does not

have content validity because it obviously does not cover many aspects of

happiness.
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Contrarily to content validity, which has no empirical testing, the proof of

convergent validity is based on actual data. Convergent validity is the degree to

which a questionnaire correlates with other measures that theory predicted it would.

Conversely, a questionnaire should not correlate with other measures that are

measuring something else. This is called discriminant validity.

Convergent validity is assessed in two ways. One way is by showing that each

dimension of the questionnaire is correlated with some other dimensions and is

uncorrelated with others, as postulated by the theory. This, of course, does not apply

to questionnaires developed with factor analysis unless an oblique rotation has been

applied, because otherwise all dimensions are uncorrelated.

The other way is by analyzing the correlation of the questionnaire scores and

subscales with selected external measures as predicted by the theory. For example,

in our happiness questionnaire we would expect the physical fitness component to

correlate with measures like number of days practicing sports, number of weekly

hours working out, or number of weekly pieces of fresh fruit eaten. The analysis of

such studies is usually based on the determination of correlation coefficients

between the questionnaire scores and the external measures.

The other type of validity is criterion validity, the degree to which a

questionnaire measures the same as a validated measure of the same construct.

Studies conducted to evaluate criterion validity require the simultaneous adminis-

tration of a set of already validated questionnaires that will serve as the gold

standard to which the instrument will be compared. Thus, this is called concurrent

validity. Again, analysis is usually based on the determination of correlation

coefficients between the questionnaire and the instruments used as reference.

In addition to reliability and validity, questionnaires should also have proof of

sensitivity and generalizability. Sensitivity is the ability of the instrument to change

its score in response to clinically important differences in the state or condition of a

subject. Studies on the sensitivity of an instrument are often conducted within

clinical drug trials and try to demonstrate that changes in the clinical state of

patients are reflected in the scores of the instrument. Generalizability is shown by

applying the instrument in different settings, by different health care professionals,

in different populations and in different cultures.
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11

Experimental studies

11.1 The purpose of experimental studies

The main feature of experimental studies, which distinguishes them from

observational studies, is that an intervention is applied to the subjects, observing

later in time whether a response is seen. The ultimate goal of experimental research

is the demonstration of a causal relationship between an intervention and a

response, although not all experimental studies have the ability to show causality.

As we have already seen, in order to establish causality it is necessary to

demonstrate an association between an intervention and a response, an order factor

whereby the intervention precedes the response, and the absence of plausible

alternative explanations for the observed response (Figure 11.1).

We saw earlier that analytical studies allow the investigation of associations,

and that some observational designs allow us to establish the order factor. It is not

very difficult to establish these two conditions but, as we discussed earlier, analyti-

cal studies hardly establish a causal relationship because they are rarely able to

exclude the possibility of alternative explanations for the observed response. As we

also have seen before, this is because of the possibility of confounding.

In order to establish causality beyond reasonable doubt it is necessary that the

study design, the procedures for the conduct of the study, and the methodology of

data analysis allow the researcher to establish the simultaneous presence, in a single

study, of the three required conditions for the presumption of causality.

Therefore, the greatest concern of experimental studies aimed at the demonstra-

tion of causality resides on the exclusion of explanations for the observed response,

other than the intervention that was applied. Consequently, as we will see, the

particularities of the design and conduct of experimental studies are essentially

related to the need of eliminating, or at least controlling, what are commonly called

the external factors to the experiment. Surely it is not possible to exclude the

possibility of contamination of the experiment by some external factors, but the
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more these factors are eliminated, the more likely it is that the study findings

correspond to reality, that is, that the conclusions are valid.

In the next sections we will focus on the methodology of clinical trials, the

most common experimental studies in clinical research. The great importance

of clinical trials is not so much the fact that they are a powerful method of

scientific research, but mainly that they are firmly established as the paradigm

for the evaluation of new products for the pharmaceutical market. Additionally,

the evidence produced by clinical trials has been increasingly adopted as the

major criterion for many decisions related to health care management and

financing, both by government and by private institutions. Some examples are

decisions on co-payment of drugs by national health services, health manage-

ment organizations and health insurance, or the inclusion of drugs on hospital

formularies.

Basically, a clinical trial aims to establish and quantify the effect of a drug or

other therapeutic intervention on selected indicators of activity or severity of a

disease and on the well-being of the patient. In a clinical trial, these indicators are

typically clinical but almost always have some degree of relationship to the

patients’ perception of a real benefit to their health or well-being. It is also a major

objective of clinical trials to determine the safety and tolerability of therapeutic

interventions.

In general, clinical trials are primarily focused on the issue of the efficacy of

treatments and secondarily on the issue of safety, although some clinical trials are

concerned only with safety. Of course, efficacy and safety are just two of the many

dimensions that can be considered in the evaluation of a treatment. Other

dimensions are evaluated by specific disciplines that will be only mentioned

because they are outside the scope of this book.

A discipline with great affinities with clinical trials is outcomes research. This

discipline seeks to develop metrics related to treatment goals as these are perceived

by patients, and designs clinical trials that evaluate treatment effects in terms of

those metrics. In a way, outcomes research is more focused on the issue of treatment

effectiveness than on the issue of efficacy.

Evidence of a strong association 
between an intervention and an 

observed response 
Association 

Evidence that the intervention 
preceded the response Order 

Evidence that the response is not 
reasonably explained by other 
factors besides the intervention 

Alternative 
explanation 

Figure 11.1 Conditions for the presumption of causality.
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Pharmacovigilance is the discipline dedicated to the evaluation of the safety

of drugs, after they have been introduced into the pharmaceutical market.

Pharmacoepidemiology is dedicated to the evaluation of the use of marketed

drugs by health care providers and of their effect under real-world conditions.

Pharmacoeconomics is dedicated to the economic evaluation of treatments, taking

into account as many factors as possible, including treatment costs, patient

monitoring cost, and costs of the treatment of adverse events, as well as the personal

and societal gains obtained by improving the health status.

The subject of treatment evaluation is thus extremely wide and cannot be

covered in its entirety in this book. Therefore, we will focus the discussion on the

fundamentals of the most critical aspects of the methodology of clinical trials. To

begin with we must have, as with any other investigational study, a clear

formulation of the study objectives, a definition of the population, a sampling

methodology, and a study design. We will begin by discussing these aspects.

11.2 The clinical trial population

As discussed earlier in this book, each clinical trial must have a conceptual

definition of the patient population for which the treatment being tested will

eventually be indicated, as well as an operational definition of the same population.

The operational definition includes the criteria for the diagnosis of the condition

under study, the criteria for the differential diagnosis, and possibly the criteria for

disease activity or severity. This set of rules that allow the researcher to decide, in

each case and without ambiguity, whether a patient does or does not belong to the

study population, is called the inclusion criteria of the clinical trial.

There are particular groups of individuals who, despite belonging to the

previously defined clinical trial population, should not participate in the research

for reasons of a diverse nature. The criteria that identify those individuals ineligible

for the clinical trial are called exclusion criteria. In most clinical trials, there are at

least five types of exclusion criteria: (1) criteria related to the possible teratogenicity

of the study drugs, and women who are pregnant and women of childbearing

potential who are not using a contraceptive method of proven efficacy, are often

excluded; (2) criteria related to the possibility of intolerance to the product, and

patients with a history of intolerance or hypersensitivity to the drugs or to the

ingredients used in their formulation, are excluded, as well as women who are

breastfeeding; (3) criteria related to an inability to comply with the procedures of

the clinical trial, such as the coexistence of mental illness or limited mobility;

(4) criteria related to the coexistence of severe disease with a life expectancy shorter

than the duration of the trial, such as advanced cancer or severe heart failure;

(5) criteria related to failure of organs involved in the metabolism and excretion of

drugs, such as the liver and kidneys.

In addition to these, several other exclusion criteria often exist, depending on

the characteristics of the treatment. For example, patients may be excluded because

they are taking medication that may interact with the drugs being tested and that

EXPERIMENTAL STUDIES 255



cannot be stopped, or because they have other diseases or conditions that may

interfere with the evaluation of the response. As a rule, all patient characteristics

that define a population in which it may be considered that participation in the

clinical trial may expose the subjects to a risk outweighing the expected benefits

must be part of the exclusion criteria.

The sampling method typically used in clinical trials is consecutive sampling.

Patients are enrolled in the clinical trial by the order they attend the trial site,

provided that they verify all the inclusion criteria, none of the exclusion criteria, and

have consented in writing to participate in the trial after they have been fully

informed of the research objectives, of all the clinical trial procedures, of any

foreseeable risks to their health, well-being, and privacy, of existing treatment

options, and of the applicable laws and regulations.

As we have seen, this type of consecutive sampling is not probability sampling

and this opens the possibility of biasing the estimates of treatment effects. The bias

eventually introduced by convenience sampling is particularly worrisome when the

aim of the clinical trial is to estimate the population effect of a treatment, but when

the aim is to estimate the difference in efficacy between two or more treatments, it

is widely assumed that differences between treatments are largely independent of

the segments of the patient population that are sampled, and therefore estimates of

treatment differences are generally considered essentially valid even if obtained

from convenience samples.

One strategy often used to try to minimize the selection bias eventually

introduced by convenience sampling is to conduct clinical trials in many sites

simultaneously, which allows the enrollment of patients from a diversity of settings.

This trials are called multicenter clinical trials. Multicenter trials have the added

benefit of shortening the time for the enrollment of patients needed for the study. In

these trials, sampling is therefore stratified by study site since patients are selected

consecutively in each center. However, in this case the purpose of stratification is to

increase patient accrual rate and to cover a wider population; it is neither to increase

the precision of the estimates nor to decrease sample size, as in the stratified

sampling method that we discussed in descriptive studies. We will see later that

some clinical trials use stratification with a different purpose.

Having obtained a definition of the patient population and the sampling method,

before we proceed to study design it is appropriate to define the clinical and/or

laboratory variables that will allow us to measure the response to a treatment, the

so-called efficacy criteria.

11.3 The efficacy criteria

Ideally, the efficacy criteria should consist of clinical parameters that are easily

measurable (preferably by non-invasive methods), objective, reliable, and perceived

by the patients as a real benefit to their health and well-being. The efficacy criteria

may be directly related to the objective of the treatment (e.g., cardiovascular
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mortality in patients with hypercholesterolemia receiving a lipid-lowering drug) or

may be surrogate criteria.

Surrogate criteria are sometimes used in situations where the variables that are

directly related to the objectives of treatment are very difficult to obtain because it

would take a very long period of observation. In such situations, it is common to use

a variable highly correlated with the objective of treatment and to assume that a

change in that surrogate variable is accompanied by a change in the unobserved

variable that truly measures the objective of treatment. For example, the objective

of the treatment for a chronic disease like primary biliary cirrhosis is the

prolongation of survival, but because a trial aimed at this goal would require

patients to be observed for decades, it is acceptable to use as a surrogate criterion

the normalization of indicators of hepatic inflammatory activity.

Either type of efficacy criteria can be represented by a single variable, for

example, the serum glycosylated hemoglobin in a diabetes trial, or by an efficacy

criterion defined by a set of variables. The latter are called composite endpoints.

For example, a composite endpoint can be a major cardiovascular event defined as a

binary variable taking the value 1 in the event of non-fatal myocardial infarction,

non-fatal stroke, or death from ischemic heart disease or stroke.

There are particular aspects related to efficacy criteria that should be discussed.

First, it is essential to ensure that the measurements are valid and reliable. This

applies particularly to the case of efficacy variables that are scores of clinical

questionnaires. It is essential to ensure that these questionnaires have been formally

validated and, if a translation of a validated questionnaire is to be used, the

translation should have been performed according to the correct methodology and

subsequently subjected to formal evaluation for validity. If measurements are to be

performed by two or more observers, then the reliability of those measurements

should be assessed using the analytical methods described in the previous chapter.

Second, it is important to consider the issue of multiplicity of the efficacy

criteria. As we saw earlier, when several comparisons are made on the same data

the probability of a type I error (the alpha error or the false positive rate of the

statistical test) increases. This is called inflation of the alpha error. We have seen

that the Bonferroni correction gives us the approximate value of inflation of the

alpha error resulting from multiple comparisons. Therefore, if a clinical trial has,

say, six efficacy criteria and the statistical significance is set at the 5% level for each

comparison, then there is a probability of approximately 6� 5%¼ 30% that one of

the comparisons will yield a statistically significant difference even though the

treatment is ineffective.

Several statistical methods are available to control for inflation of the alpha error

caused by multiple testing, and later on we will cover some of them. A common

practice has been to classify the efficacy criteria as primary or secondary. Primary

efficacy criteria are kept to a minimum, preferably just one or two key parameters

and appropriate methods to control the alpha error being used. Additional variables

perhaps representing complementary gains in patient health and well-being that are

evaluated simultaneously during the clinical trial are classified as secondary
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efficacy criteria and no adjustment for multiplicity is made in the statistical tests on

these criteria. Therefore, if statistical differences are seen only in secondary but not

in primary efficacy criteria, this cannot be taken as firm evidence of treatment

efficacy because those differences could have originated from multiple testing.

Thus, secondary endpoints are intended only for the documentation of possible

additional beneficial effects of a treatment under a strictly exploratory approach.

Finally, at least one of the primary efficacy criteria must be binary, interval

scaled, or an event. This is because it is of major importance in clinical trials

to estimate the magnitude of treatment effects through the construction of

confidence intervals.

11.4 Non-comparative clinical trials

The simplest experimental design we can conceive for a clinical trial consists of

a single sample of patients to whom a treatment is applied and, after allowance

is made for an adequate time span for the treatment to produce its effect, an

evaluation of the efficacy criteria is performed. From the sample proportion of

the patients achieving the pre-specified efficacy criteria, interval estimates are

constructed for the efficacy rate in the patient population receiving that treat-

ment. This design is shown in Figure 11.2a. If the efficacy criteria are interval

variables, it is usually appropriate to take a measurement of those criteria just

before the prescription of the treatment, that is, a baseline evaluation, and obtain

interval estimates for the average intra-individual difference between the final

and the baseline measurement. A statistical test for paired samples can also

be done, and if the result shows a statistically significant difference between

O2 X O1 
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Figure 11.2 Non-comparative designs with a single end of trial observation (a),

with baseline and final observations (b and c), with repeated measures at baseline

(c). O represents a measurement of the efficacy variables, X the intervention.
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the two observations, this would mean that the state of the patient changed

after administration of the treatment. This design is shown in Figure 11.2b. The

question, with both designs, is whether non-comparative clinical trials are sufficient

to demonstrate a causal relationship between a treatment and an outcome. Let us

check which conditions they demonstrate for the presumption of causality.

We can say that they demonstrate the order factor, because the intervention

preceded the final observation. However, non-comparative trials do not show the

existence of an association between the intervention and the outcome. As we know,

in order to demonstrate an association we would need to compare the mean value of

an efficacy variable in the population exposed to a treatment to the mean value of

that variable in the population of patients in which the treatment was not

administered. In other words, in order to demonstrate an association between a

treatment and a response we need to have a control group. In the next chapter we

will discuss the design of controlled clinical trials.

In addition to not demonstrating an association between a clinical response and

an intervention, non-comparative clinical trials also do not rule out many alternative

explanations for the observed response. For example, the simple effect of time on

the natural history of disease might be a reasonable explanation for a change in the

state of the patients. As we will see later on, there are quite a large number of

plausible explanations for a change in the state of the patient other than the

administered treatment. This is another reason for having a control group, because

if a number of factors besides treatment may influence the response, in a controlled

clinical trial their influence is exercised similarly in the intervention and control

groups. The effect of the treatment itself is thus isolated.

An example of a possible alternate explanation for an observed change in

efficacy criteria not due to the treatment intervention is a statistical phenomenon

known as regression to the mean. This may happen in non-comparative trials

evaluating the change from baseline in an efficacy variable.

Figure 11.3 illustrates how this phenomenon works. In situations where the

primary efficacy variable shows considerable variation over time, if inclusion

criteria determine that only patients with a value of this variable above a relatively

high threshold are included, there is a strong possibility that the study population

will contain a large proportion of subjects in which the average value of this

variable over time is substantially lower than the chosen threshold. Therefore, it is

very likely that a second observation done at a later time will produce a value that is

closer to the mean value of that variable for that subject. Thus, at the end of the trial

there is a high probability that a difference from the baseline value is observed, even

if a treatment is completely inactive.

For example, consider a clinical trial of a substance intended to lower blood

pressure. If we define as an inclusion criterion a value for a casual reading of the

diastolic blood pressure greater than 90mmHg, there is a reasonable probability of

including subjects in whom the average diastolic pressure is less than 90mmHg but

that on a random reading happened to have a value greater than the threshold for

inclusion in the trial. Regardless of whether or not a treatment is administered, there

is a high probability that, on a second measurement later in time, a value closer to
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the average value for that subject, and therefore lower than the subject’s baseline

value, will be obtained. Hence the name regression to the mean.

Thus, in any non-comparative trial in which the value of the efficacy variable, or

another attribute closely related to it, is used as an inclusion criterion, there is the

possibility that any observed difference between the final and the baseline values

are due only to regression to the mean. A conclusion is that non-comparative

clinical trials where subjects are included on the basis of some pre-specified value

of the efficacy criterion need a confirmation that the measured values are close to

the average value of each subject and are not occasional outliers. If several

measurements are made a few days apart, and the average value of those readings is

above the threshold for inclusion, this will confer some protection against the

possibility of regression to the mean. Figure 11.2c illustrates this design

schematically.

At this point in the discussion it is natural to wonder if non-comparative trials

are useful. Actually, as descriptive studies, they are very helpful in many ways.

They may indicate that a treatment is ineffective if no response is seen after its

administration; they allow identification of the adverse events of a treatment, which

is important for the definition of the safety profile of a treatment; they may establish

proof-of-concept that the effect of a treatment corresponds to the one predicted by

theory; they may help identify subgroups of patients more prone to toxicity or less

likely to respond to the treatment; and they provide data that will help plan further

larger-scale comparative trials. Very often, the initial evaluation of a new treatment

is made with non-comparative trials.

Average value 

O2 X O1 

Threshold

Change from baseline

 
for inclusion 

Figure 11.3 Illustration of the phenomenon of regression to the mean. The graph

represents the variation over time of the efficacy variable in a given subject. O

represents a measurement of the efficacy variables, X the intervention.
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11.5 Controlled clinical trials

A clinical trial with a control group has the potential of allowing the establishment

of the three conditions for the presumption of causality. This design demonstrates

the order factor, because the intervention precedes the evaluation of the response;

demonstrates an association between the intervention and the response, because

now there is a comparison group that was not exposed to the intervention; and

eliminates alternative explanations for an observed response because the compar-

ison group allows us to control for the influence of many external factors. Because

these factors act similarly in both groups, their influence on the response is canceled

out and the effect of the intervention is therefore isolated.

Figure 11.4 illustrates schematically the design of a controlled clinical trial

where O1 and O2 represent the observations of the efficacy criteria in each group

and X the intervention. There may be only one measurement of the efficacy criteria

in the last observation, or there may be a baseline measurement as well. This study

design has, as its main characteristics, not just two or more groups, but also a

method for the allocation of the subjects to the groups.

In most instances, the control group is observed at the same time as the

intervention group, and they are called concurrent controls, but in special

situations the clinical trial may use historical controls, that is, the comparison is

done with patients who have in the past been included in a similar clinical trial.

Clearly, the use of historical controls is limited when evidence of causality is

sought, because the patient populations might have somewhat different character-

istics and this alone could explain differences in the outcomes eventually observed.

Naturally, if we want to exclude the possibility of the observed response being

due to factors other than the treatment, the first requirement is that the control

group should have similar characteristics to the intervention group. One way to

achieve this would be by using matched controls, that is, by selecting for the

control group patients with characteristics similar to those who were included in

the intervention group. In principle, this method would yield comparable groups.

That would be only in principle, though, because in reality it is impractical to

match individuals for more than a few attributes, and even with only a small

X 

O1 

O2 

Figure 11.4 Diagram of the controlled clinical trial.
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number of matching attributes it could take a long time until all the controls were

found. The benefits of matching as a method for forming identical groups are

actually small, because the method only ensures that the groups are comparable

with respect to a small group of features.

Another possibility is simply to assign subjects to groups at random. If patients

are randomly assigned to groups, not only will their characteristics tend to be

similarly distributed in both samples, but more importantly there is the guarantee

that the populations from which the samples were obtained are identical on all

characteristics, not just on the known important factors but for all the factors too,

both known and unknown, important or unimportant. Therefore, the random

allocation of patients to the study groups eliminates the possibility that differences

in the outcomes between treatments are due to differences in the characteristics of

the populations from which the groups were sampled. The purpose of randomiza-

tion is not to obtain study groups with identical distributions of patient attributes,

which would be impossible due to sampling variation; rather, the purpose is to

guarantee that the null hypothesis of no difference in population means of the

efficacy criteria between study groups is true at baseline and, in this manner, to

ascertain that a difference in population means at the end of the trial must be a

consequence of the treatment, if contamination from external factors can be

excluded.

If patient enrollment in the trial is consecutive and patients are randomized to

the study groups, this should eliminate any interference from the researcher in the

formation of the samples of patients. In other words, consecutive enrollment and

randomization eliminate selection bias. Obviously, the absolute equality of the

populations under study can only be guaranteed if the sampling procedures and

randomization are performed without fault.

The design just described is known as the randomized controlled clinical trial,
which is widely considered as the gold standard for the evaluation of treatments.

11.6 Classical designs

Controlled clinical trials are often conducted according to a design called parallel

group trial, as illustrated in Figure 11.5. This design is called parallel because

patients are randomized into two or more groups, each submitted to a different

intervention, and patients are observed over time, keeping the trial conditions

identical for all groups as far as possible. The two-group parallel design is certainly

the most frequent type of controlled clinical trial, largely because it is easier to

conduct and results are easier to interpret than trials with three or more groups.

An important advantage of a parallel design is its flexibility, which allows, on

the one hand, the modeling of various aspects of treatment administration and, on

the other, to test several hypotheses in the same study. For example, a clinical trial

may have an initial washout phase to allow for the elimination of previous

treatments, followed by a dose titration phase to find the dose that best fits the

individual patient, and then by the treatment phase where one or more treatments in
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different doses and schedules of administration may be compared. Treatment effects

can be compared at the end of the treatment phase to determine the relative efficacy

of the treatments and again after a further period of observation to determine the

rate of recurrence of symptoms, long-term efficacy, or long-term safety.

Another design is the crossover trial, also illustrated in Figure 11.5. In its

simpler form, patients are randomized to one of two treatment groups and observed

for a period of time. At the end of this period the efficacy criteria are evaluated and

the treatments are withdrawn. After a period of time considered sufficient to allow

for the effects of treatments to wear off completely, the patients are then

administered the treatment that the other group received, again being observed to

determine the response. Thus, after the first treatment, patients are crossed over to

the alternate treatment.

The advantage of this design over the parallel group trial is that each patient

serves as his or her own control. Therefore, the variability of the efficacy variable is

much less than in parallel group trials because the variability between individuals is

eliminated. Thus, for the same sample size the crossover design has greater statistical

power than the parallel group trial and, therefore, requires a significantly lower

number of patients to demonstrate the same effect. (In the worst case scenario, a

crossover trial requires half the sample size of an equivalent parallel trial with the

same power and alpha error, but if the outcomes of the treatments are correlated the

sample size is further reduced by a factor equal to one minus the correlation

coefficient between the two outcomes. That is, n¼ (1� r)�N/2 where N is the

sample size required for a parallel group trial.) However, the other side of the coin is

that this design has limitations in its application that diminish its usefulness.

In order that both treatments of a crossover trial can be compared, it is necessary

that at the beginning of the second period the patients are in the same state as they

were at the beginning of the first period. For that to happen, two conditions are

necessary. First, the disease has to be stable over time, showing no tendency for

progressive improvement, worsening, or seasonal variations, otherwise the mean of

the efficacy variables will be different in the two periods, regardless of the received
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Figure 11.5 Classical designs of controlled clinical trials.
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treatment. This is called an order effect. Second, the effects of the treatments have

to be fully reversible and the disease has to return to its initial state after

discontinuation of the treatment. If the effect of a treatment continues to the next

period, either because the substance has not been totally eliminated from the

organism or because it caused a persistent change in the disease, the difference in

efficacy between the two groups will not be the same in both periods. That is, there

will be a treatment by period interaction due to the carryover of effects from the

first to the second period.

If a treatment by period interaction exists, it will not make much sense to

combine the data from the two periods. In that case only the data from the first

period should be used, as if it were a parallel group trial, but then there may be

insufficient patients for the trial to have adequate power. Consequently, for the

statistical analysis of a crossover trial, the procedure is always to look first for a

treatment by period interaction. If an interaction is not present, then the analysis

consists of a comparison of the treatment effects adjusting for a period effect. If a

period effect is identified, it should be explained and taken into account in the

interpretation of the results. There are several methods available for the analysis of

crossover trials, from standard t-tests to more complex methods based on anova,

and the particular method selected in each case will depend on a number of factors,

including the characteristics of the problem, the specific design of the trial, and the

balance of the number of subjects across the arms of the trial.

For example, for a simple two-group, two-period crossover trial of treatments A

and B with a single measurement of the outcome variable at the end of each

period, the analysis is as follows. For each group, we take the difference in the

outcome variable in each subject between the first and second period and

compute their mean and variance. Call DAB and DBA the means of the within-

subjects differences in the first and second groups, respectively. Under the null

hypothesis of no difference between treatments A and B, DAB and DBA should

be equal apart from random variation. This null hypothesis may be tested with

a standard two-sample t-test, by dividing DAB�DBA by an estimate of the

standard error of the difference obtained from the combined sample variances

and their degrees of freedom. A statistically significant difference is evidence

of a treatment effect adjusted for the order of administration of the treatments.

For the test of an order effect, the null hypothesis is that DAB and DBA are

equal but opposite in sign. Accordingly, this hypothesis is tested with a standard

t-test, by dividing DAB� (�DBA) by the estimate of the standard error.

For the test of the treatment by period interaction we must sum in each

subject the outcome variables in the two periods and compute their means and

variances. Each sum represents thus the treatment effect plus the period effect

for each subject. Call SAB and SBA the means of the within-subjects sums in the

first and second group, respectively. If there is no interaction SAB and SBA
should be equal, apart from random variation and between-subjects variation. If

there is a treatment by period interaction these quantities should be different.
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Therefore, we test the null hypothesis of no interaction with a standard t-test by

dividing SAB� SBA by the estimate of the standard error of the difference

obtained from the combined sample variance of the sums and their degrees

of freedom.

It should be noted that the interaction test has small power and a non-significant

result may not provide enough security of an absence of carryover effects. Because

of the assumptions of crossover trials their application is restricted, but they are still

used in selected clinical conditions that are of a chronic nature, are relatively stable

over time, and when treatments are not expected to act on the underlying pathologic

process, for example, epilepsy or asthma. More complex crossover designs that

include multiple periods and multiple treatments are frequently used for dose

determination studies of investigational drugs.

A third design found in the literature, although infrequently, is the 2� 2

factorial design, which is represented schematically in Figure 11.5. This design

may be used for the investigation of the efficacy of two different treatments as well

as of their combined administration.

A 2� 2 factorial design consists of four parallel groups. One of the groups is

administered treatment A, another treatment B, another the association of treatments

A and B, and the fourth is the control group which receives neither treatment A nor

B. The economy in the sample size is obtained because the determination of the

efficacy of treatment A is based on a comparison of the outcomes of all the subjects

that received treatment A with the outcomes of those that did not receive it. That is,

the outcomes observed in the groups A and AþB combined are compared to the

outcomes of the group B and control group combined. This can be done because, if

the effects of treatment A and B are independent, then both the difference between

group A and the control group, and the difference between group AþB and group

B, estimate the effect of treatment A. If sample sizes are equal, a combined estimate

of the effect of treatment A may be obtained by averaging the two differences. For

treatment B the procedure is the same: groups B and AþB combined are compared

to group A and the control group combined. The factorial design has the same

sample size requirement of a single parallel trial, with the same power and alpha

error, comparing the least effective treatment to the control group. Therefore, with a

factorial design two trials are conducted at the same cost, in terms of sample size, as

a single trial.

However, if there is an interaction between A and B, this means that the effect of

one treatment is modified by the simultaneous administration of the other treatment.

Interaction may manifest itself in two ways. The simultaneous administration of the

other treatment may change the magnitude of the effect compared to no treatment,

which is called a quantitative interaction, or may reverse the effect, making it

worse than no treatment, which is called a qualitative interaction. In either case, it

is no longer possible to estimate the isolated effect of treatment A by combining

groups A and AþB, nor the isolated effect of treatment B by combining groups B

and AþB. However, a small quantitative interaction may be tolerated and an
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estimate of the average treatment effect may still be acceptable, although it must be

taken into account that some patients will experience a little less benefit, and others

a little more benefit, from the treatment than the estimate produced by the trial.

Therefore, whenever a significant interaction is identified, the trial must be

analyzed as a parallel trial with three arms and a control, that is, by comparing each

of the treatment arms to the control. In this event, the problem is that the sample

sizes may not afford enough power for a demonstration of efficacy. In addition, the

same considerations apply regarding the lack of power of interaction tests as

discussed above for crossover trials.

11.7 The control group

We have been talking about the control group as a sample of individuals from

the same population as the intervention group that is submitted to exactly the

same trial procedures with the sole exception of not receiving the treatment

under investigation.

However, if individuals in the control group do not receive any treatment, in the

eventuality that a difference in efficacy between the two groups is observed, an

alternative explanation for the observed difference could be that its cause was the

fact that some patients had the perception of receiving a treatment while others had

the perception that they were left untreated. This could have introduced a bias,

called participant’s bias, because patients in the treated group might have greater

expectations of an improvement to their health than those receiving no treatment.

This bias is caused by the placebo effect, which manifests itself in an

unpredictable, often beneficial, but sometimes detrimental, effect for the patient.

In order to control for participant’s bias, all groups in a controlled clinical trial

must be given a treatment. If the aim of a trial is to compare the efficacy of a

treatment against no treatment, then the control group should receive a placebo. In

drug trials, a placebo is a pharmacologically inert substance, usually consisting of

the excipients used in the formulation of the investigational product but without the

active substance.

If the treatment under investigation is inactive and its effect is due only to

a placebo effect, then if the control group receives a placebo treatment the

outcomes observed in the two groups will be similar and their difference will

be zero. If the treatment does have efficacy, then the observed outcomes in the

treatment group represent the sum of the effect of the treatment with its

placebo effect, and the difference to the placebo control group will estimate the

effect of the treatment itself.

In practice it is relatively rare to administer only a placebo to the control

group. For ethical reasons, it is not acceptable to deny treatment to patients

under any justification, including for the purposes of a clinical trial. Thus, a

placebo is reserved for clinical situations for which there is no treatment with

proven efficacy and for selected situations in which, although an approved

treatment exists, no harm will be done to the patients by withholding treatment
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for a clinical trial of short duration. In all other cases, the control group should

receive the best treatment available and the treatment under investigation is to

be compared to the standard of care. A control group that receives the approved

treatment is called an active control.

A placebo is also acceptable in clinical trials evaluating an add-on treatment,

that is, a treatment that is to be used in addition to the standard of care. Then, the

placebo group receives the standard treatment plus the placebo add-on. In all cases

of placebo-controlled trials the patient must be fully informed of the chances of

being assigned to a placebo group.

11.8 Blinding

The administration of a placebo or an active treatment to controls does not discard

entirely the possibility of attributing a difference in efficacy between groups to

differences in the attitude of patients, and possibly also of researchers, regarding the

results of treatment. The assessment of response can be influenced by knowledge of

the substance being administered, systematically favoring the evaluation of one of

the treatments. This is called evaluator’s bias.

In addition, depending on their prior beliefs regarding the benefits and risks of

the experimental treatment, investigators might adopt different patterns of care for

patients in the intervention and in the control groups, such as systematically

providing encouragement to stay on the trial, using supplemental interventions of

care or treatment, or having different criteria for withdrawing patients from the trial

to one of the groups, thereby compromising the comparability of the groups during

the conduct of the trial.

Therefore, it is most important to hide from the patient and the investigator

which treatment is being administered. This requires that the test treatment and

the comparator, whether it is an active substance or a placebo, have exactly

the same look and feel and that there are no identifying elements in any of the

treatments.

This design is called double-blind and its purpose is to control for both

participant’s bias and evaluator’s bias, therefore affording comparability of the

groups throughout the trial. However, sometimes it is not possible to hide from

the investigator the nature of the treatment being administered, for example,

because one of the treatments is associated with characteristic adverse reactions. In

this case there may be two options: either the efficacy criteria are evaluated by a

third person who has no knowledge of the treatment being administered to the

patient nor of any manifestations that could indicate the treatment, called a triple-
blind trial; or the trial is conducted as single-blind, that is, only the patient has no

knowledge of the treatment being administered. The latter option may, for the

reasons presented above, open the possibility for an alternative explanation of the

observed effect, particularly when the efficacy variables are not objective measures.

When the trial cannot be single-blind, for example, when comparing a medication

with surgery, the design is called an open trial.
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Sometimes a clinical trial compares drugs that are administered in different

schedules, and in this case a placebo is used to allow the trial to be conducted as

double-blind. For example, one medication is administered as one tablet once a day

while the comparator is administered as one tablet three times daily. In this situation

it is possible to conduct a double-blind trial by using placebo tablets to complete the

three daily administrations, as illustrated at the top of Figure 11.6.

To the same end, when both treatments have completely different formulations,

for example, tablets versus injections, it is possible to conduct a double-blind trial

using the technique of the double-dummy. As shown at the bottom of Figure 11.6,

this method consists of administering, in each group, a placebo identical to the

treatment of the other group.

11.9 Randomization

Another feature of comparative studies that needs further discussion is the method of

randomization of subjects. In principle, any process that distributes individuals in a

perfectly random fashion is acceptable, including the tossing of a coin. However, this

method of simple randomization has the inconvenience of not controlling the

number of individuals that are included in each treatment group. Groups of similar

size have several advantages, including obtaining the maximum power for the

statistical tests, the possibility of using statistical methods that require equal numbers

of observations in each group, as in some types of anova, and the relaxation of some

assumptions of statistical tests, such as the equality of variances in Student’s t-test.

The method of block randomization ensures that all trial arms will have

approximately the same number of subjects, not only at the end of recruitment, but

also at any time during the trial. This is convenient because, due to the usual

difficulty in recruiting patients for a clinical trial, the study may end before the
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Figure 11.6 Uses of placebo for maintaining double-blinding. The placebo is

represented in gray.

268 BIOSTATISTICS DECODED



planned number of patients has been reached. In this method, before the trial begins

subjects are randomized in sets of predefined size, called blocks, in a manner such

that, in each block, the subjects are distributed evenly between treatment groups

(Figure 11.7).

For example, with two treatment arms A and B the blocks are permutations of A

and B with half the subjects allocated to each treatment in each block. This method

ensures that, no matter what the final sample size is, the maximum difference in the

number of subjects between groups will be no greater than half the size of the block.

The method of randomized permuted blocks goes even further in the attempt

to achieve an even balance in the allocation of subjects to treatment arms. In this

method the blocks are formed in a way that ensures that the samples will be evenly

balanced not only in the number of subjects, but also in the order of inclusion in the

trial. For example, if by chance the blocks always started with the sequence AA or

ABA, the subjects in group A would systematically be included in the trial at an

earlier time than subjects in group B. This technique prevents that from occurring.

Randomization need not be balanced among groups. Sometimes unbalanced

randomization is selected, allocating different numbers of subjects to the treatment

arms. This method may be selected for a number of reasons, for example, in

placebo-controlled trials in order to give the trial subjects a greater probability of

being randomized to the active treatment group. Sometimes unbalanced randomiza-

tion is adopted because one of the treatments is more difficult to administer or more

expensive, but perhaps the most common justification for using unbalanced

randomization is because a larger sample is sought in some of the treatment arms in

order to obtain better estimates of the incidence of adverse events.

It is of paramount importance that randomization is done without errors,

otherwise the trial arms can no longer be considered as samples from the same

population and, consequently, differences in outcome between treatments may not

be caused solely by the treatment. In addition, the investigator must not be able to

simple 

block 

stratified 

dynamic 

Figure 11.7 Randomization methods used in controlled clinical trials.
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know the sequence of randomization prior to the inclusion of a subject, otherwise

selection bias will be introduced. That is, if the investigator knows to which

treatment group the next patient being enrolled will be allocated, this knowledge

may influence the decision to include patients presenting certain characteristics,

depending on the investigator’s beliefs about the efficacy and tolerability of the

treatments in each study arm. Therefore, the allocation of patients to treatment

groups must be done with concealed randomization and an adequate procedure

should be designed and implemented to guarantee the concealment. This is often

done by creating, before initiation of the trial, a randomization list with the

sequence of treatments. This list is hidden from the investigator and the treatment

that a patient is to receive will be revealed to the investigator only after the patient

has been definitively included in the trial. In a double-blind trial, the study

medications must be packaged identically and the investigator is told only the code

of the medication. In open trials using block randomization the blocks should be of

varying size, otherwise the investigator will easily realize the size of the block and

will be able to discover the treatment to be given to the last subject in a block.

A simple method of concealed randomization is to prepare envelopes numbered

in the order of inclusion in the trial, each envelope containing a card indicating the

treatment to be assigned to the patient. After a patient is definitely included in the

trial, the envelope with the lowest number is opened and the treatment group is

revealed. The procedure is illustrated in Figure 11.8.

In industry-sponsored pharmaceutical clinical trials, concealed randomization is

more often achieved with the utilization of interactive voice response systems

(IRVSs). In such systems, the medication code is given to the investigator by

telephone, usong an automatic response system.

Another method of randomization, which may be combined with block

randomization, is stratified randomization. This method may be used when one

wants to ensure that the treatment groups will have identical distributions of one or

more key attributes. These attributes are important because the values of the

efficacy variables are different in the subsets of patients defined by those attributes.

Thus, these attributes add variation to the efficacy criteria and, consequently,

contribute to a decrease in the power of the study. In stratified clinical trials, the

differences between group means in the efficacy criteria are computed separately

for each stratum and then combined into a single estimate of the difference in

efficacy between treatments, thus maintaining the power of the study.

For example, suppose we want to stratify a clinical trial by the presence of

diabetes, because we know that the values of the efficacy criteria have different

means in the diabetic and non-diabetic populations. Ideally, as in any

comparative study, we want to make sure that at the conclusion of the trial the

number of subjects in each treatment group is approximately equal within each

stratum. This is achieved by creating separate randomization lists, one for each

stratum. As each subject is included in the trial, the stratum to which the

patient belongs is determined and the randomization list pertaining to that

stratum is used. Randomization on multicenter clinical trials should always be

stratified by study site.
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A clinical trial can be stratified by several attributes, but then the number

of strata and randomization lists will increase geometrically with the number of

stratification variables. In practice, it is difficult to manage a trial with more than

two strata, in addition to the trial site strata, and so this method should be

considered only for attributes that have great influence on the response to treatment,

and when the trial is so small that a difference between groups in only two or three

individuals with that attribute can result in a significant increase in the variance of

the efficacy criterion. Still, in this situation it may be more rewarding to increase the

sample size than conduct a stratified trial.

Randomized stratification may also be used when it is desired to estimate

treatment efficacy separately for each stratum as well as for the whole population.

In this case the sample size is computed separately for each stratum. It is important

to note that combining across the strata the differences in the efficacy criteria

between groups to obtain a single estimate of the difference between treatments is

only possible if the difference in efficacy between groups is equal across the strata.

In other words, there can be no interaction of treatment by stratum. If an interaction

exists, especially if it is qualitative, the treatments should be compared separately in

each stratum but a combined estimate is no longer adequate.
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Figure 11.8 Concealed randomization using opaque envelopes.
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A method of randomization known as minimization can be used to obtain a

similar distribution of a large number of attributes between the study groups. This

method determines, for each individual included in the trial, the treatment group to

which the individual should be allocated in order to minimize differences in the

distribution between groups of the stratification attributes. The method differs from

matching because only the marginal totals are kept identical between the groups and

not every individual has a control with identical characteristics. For example, if the

matching attributes are gender and diabetes, the final sample of a matched study

will have the same number of, say, diabetic women in both groups. With

minimization, what is granted is that the groups will have the same number of

women and the same number of diabetics in both groups. In the condition where

both attributes are independent, the effect is identical to matching.

Finally, it is worth referring to the methods of dynamic randomization that

adjust the randomization ratio of subjects into groups according to the results that

are being observed throughout the study (Figure 11.7). In a trial with dynamic

randomization the outcomes of the treatment groups are compared at predetermined

time points during the trial and the randomization ratio is unbalanced in favor of the

study arm showing better results up to that time point. For example, if the initial

randomization ratio between groups A and B is 1 : 1, that is, equal probability of

allocation to the treatment groups, and a mid-trial evaluation of the results shows

better responses for treatment B, the allocation ratio is changed to 1 : 2. If a

subsequent analysis continues to show better results for treatment B the ratio is

increased to 1:3, otherwise it is changed to 1:1 again. The process is repeated

several times and randomization rates are adjusted to promote the inclusion of a

larger number of patients in the treatment group showing better results.

The purpose of dynamic randomization is thus an attempt to offer the more

effective treatment to a larger number of subjects in the study population. For

example, if with treatment A remission of the disease is achieved in 60% of the

cases and with treatment B in only 30%, in a trial of 200 patients with a 1 : 1

randomization ratio we would expect to observe 90 remissions (60 in group A and

30 in group B). However, if the randomization ratio had been 3 : 1 in favor of group

A, we would expect to observe, in the same 200 patients, 105 remissions (90 in

group A and 15 in group B). Because we do not know at the outset of the trial which

treatments are more effective, dynamic randomization seeks to maximize the

number of responses in the trial population as information is being gathered during

the trial.

As we have already seen, the power of a statistical test is at its maximum when

the samples are of equal size. Therefore, when dynamic randomization is used the

sample size must be adjusted to maintain the power of the trial.

11.10 The size of a clinical trial

From the previous discussion we can appreciate that it will be difficult to

properly organize a randomization procedure without previously defining the
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total number of subjects required for a clinical trial. There are of course other

important reasons for the determination of the sample size during the planning

phase of a trial. It would be unethical to start an investigation involving patients

without even having an estimate of the probability of success, that is, of

reaching a useful conclusion.

Accordingly, for the calculation of the sample size we begin by deciding on the

probability that a difference between treatments will be demonstrated if a difference

truly exists. We call this probability the power of the trial, or true positive rate, or

1� b. Typically, the power adopted for clinical trials involving human subjects lies

between 80 and 90%, but can be higher, and it is not uncommon for clinical trials to

be powered to 99%.

Then we need to decide on the proportion of patients in each group. We already

know that equal sample sizes afford the greatest power, but sometimes there are

reasons that militate in favor of the treatment groups having different sizes.

If the efficacy variable is interval scaled, we need to obtain information about its

variance in the target population. This information can usually be obtained from the

literature on clinical trials conducted in a similar population, from databases of

previous clinical trials, or, in the absence of this information, from a small number

of observations of a group of patients.

The next decision is much more difficult. We must specify the difference

between treatments that the trial will be able to identify with the previously defined

power. The general approach is to adopt the criterion of the minimal clinically

important difference (MCID), which is the difference in efficacy between

treatments that represents a gain in health and well-being of the patient that justifies

a decision for switching from the standard treatment to a new treatment.

Obviously, the definition of the MCID is not easy and carries great subjectivity.

For this reason, a discussion with several experts experienced in the disease being

researched, in the values and expectations of the patients, and in the treatments that

are to be tested, is required to find a value that meets consensus.

More formal methods of reaching a value for the MCID are available. In

anchor-based methods a meaningful external measure, the anchor, is used to

provide a yardstick against which a difference in the efficacy variable may be

compared. For example, one could use as anchor the patient’s global impression of

change and adopt as the MCID the mean difference in the efficacy variable between

patient statements of ‘no change’ and ‘somewhat improved.’ This would require a

longitudinal study of a cohort of patients evaluated before and after an intervention,

but the MCID can also be assessed in cross-sectional studies. For example, one

could use as anchor the performance status, a validated scale of well-being of

cancer patients, and estimate the mean difference in the efficacy variable between

two scores on the scale from a sample of patients. Several methodologies have been

proposed for the determination of the MCID by anchor-based methods.

In distribution-based methods the efficacy variable must be interval scaled and

the MCID is defined as a quantity that is orders of magnitude above the variability

of the efficacy variable. One of the most commonly used measures is the effect size,

which is the difference d in the mean value of the efficacy variable expressed as a
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proportion of its standard deviation s, that is, effect size¼ d/s. It is generally agreed

that an effect size of 0.2 is indicative of a small change, 0.5 of a moderate change,

and 0.8 or more of a large change. So for example if the primary efficacy variable

has a standard deviation of, say, 12mg/dL the MCID would be 0.2� 12¼ 2.4mg/

dL. This means that a difference of 0.2 standard deviations from the mean,

corresponding to a difference of 2.4mg/dL between treatments, represents an

important difference.

One problem with this measure is its dependence on the variability of the

efficacy variable. Therefore, if the variance is very small the MCID will also be very

small and may not reflect a clinical improvement. For example, glycosylated

hemoglobin in diabetic patients has a standard deviation of about 0.9 and an effect

size of 0.2 represents a decrease of only 0.18, which is far from being clinically

relevant. One way around this difficulty is to consider the MCID as a quantity that is

orders of magnitude above measurement error. The standard error of the

measurement can be estimated by the product of the variance of the primary

efficacy variable and one minus the reliability of the measurements. Reliability may

refer to the intraclass correlation coefficient or to the internal consistency of a scale.

Values of change above 1.96 standard errors of measurement have been suggested

as the MCID. Other approaches to distribution-based methods have been proposed.

Clearly, each of the above methods has pitfalls and limitations and often anchor-

based, distribution-based, and expert-based methods are employed concurrently in

the search for a consensus definition of the MCID.

The next decision regards the significance level that will be adopted. General

practice is, as we know, to adopt the two-sided significance level of 0.05. However,

often clinical trials seek to show that the difference in the primary efficacy variable

between the test treatment and the control treatment is greater than the MCID. The

null and alternate hypotheses are thus H0: mT�mC�MCID and HA: mT�mC >

MCID. Accordingly, a difference between treatments is more logically tested with

a one-sided test, but since it is always possible that the test treatment performs

worse than the control treatment, even if the control is a placebo, if a one-sided test

is used the significance level should be set at 2.5%.

If the clinical trial has more than one primary efficacy variable the significance

level will have to be adjusted to account for multiple comparisons. In this case,

sample sizes must be computed for each primary variable and the largest number

should be selected. In the next chapter we will discuss several methods for the

analysis of multiple endpoints and we will see how the selected method influences

the sample size calculation. The same considerations apply to clinical trials with

more than two treatment arms.

In Section 7.3 we saw how to calculate sample sizes for binary and interval

efficacy variables, and the same calculations are used for clinical trials.

However, the primary efficacy criterion in many clinical trials is time to event

and in this case sample size calculations cannot be done with the formula used

for the comparison of two proportions. This is because the proportion of subjects

experiencing the event depends on the duration of the observation period and so

it makes little sense to assume a given proportion of patients with the events in
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the control group. For example, consider a trial where the primary outcome is

survival and the treatment is expected to decrease the mortality rate to 70% of

that of the controls. To compute the sample size with given power and

significance level using the method described previously for the comparison of

two proportions we would need to define the proportion of survivors in the

control group; however, this proportion decreases over time. Therefore, unless

we establish a fixed observation time for all subjects, it makes no sense to define

that proportion.

The solution is to compute the number of events required to afford the pre-

specified power for the trial. This number can be estimated from the MCID

established for the trial, which is the minimum difference in the event rates between

two treatment groups that is considered clinically important. This difference is

expressed as a ratio which, in the context of time-to-event studies, is called the

hazard ratio.

If all subjects are observed until the event occurs, which is uncommon, the

number of subjects needed is equal to the number of events required. However,

if some of the subjects have censored observations, as is usually the case, the

number of subjects necessary must be greater than the number of events

required. From the number of events required and from estimates of the

probability of the event in the controls at the end of the follow-up period, we

can derive the total number of subjects to be enrolled. It should be noted that the

power of the trial depends entirely on the number of observed events and not on

the number of subjects enrolled. For this reason these trials are called event-

driven trials.

Two popular methods for computing the number of events that need to be observed

in a trial to detect a difference at the a significance level with power 1� b are

the Freedman method and the Schoenfeld method. For a two-tailed test with equal

groups the Freedmanmethod calculates the number of events E as

E ¼ ðza=2 þ zbÞ2 � HRþ 1

HR� 1

� �2

and the Schoenfeld method as

E ¼ ðza=2 þ zbÞ2 � 2

lnðHRÞ
� �2

where HR is the hazard ratio of the event in the test treatment to the control

treatment.

For example, suppose we are planning a clinical trial to compare the

survivor functions of subjects submitted to one of two treatments where the

MCID was defined as a 30% decrease in mortality; that is, it is expected that

the hazard ratio of the test treatment to the controls is 0.70 or less. We plan to

observe the patients for a period of three years. The null hypothesis will be

tested with a two-sided logrank test with a¼ 0.05 and we want the trial to have
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80% power to detect that difference. From the table of the normal distribution

we obtain the value for za/2¼ 1.96 and zb¼ 0.84. Using the Freedman method

the number of events we need to observe is

E ¼ ð1:96þ 0:84Þ2 � 0:70þ 1

0:70� 1

� �2

¼ 252

With the Schoenfeld method the number of events is

E ¼ ð1:96þ 0:84Þ2 � 2

lnð0:70Þ
� �2

¼ 247

If all patients were observed up to the occurrence of the event, that number

would be the total sample size (126 patients per treatment group). As we expect

that a number of patients will be censored, the total number of patients required

is equal to the total number of events divided by the probability of the event at

the end of the follow-up period:

N ¼ E

PE

An estimate of PE can be obtained from Kaplan–Meier estimates of the

survivor function in the control group at time t, which in this example is three

years. If we denote by Sc(t) the cumulative probability of survival at time t in

the controls, under the proportional hazards assumption the survival probability

in the treatment group will be St(t)¼ Sc(t)
HR. If we average these estimates and

subtract the result from one we will get the estimated probability of the event

by the end of the follow-up.

Suppose we knew that the cumulative probability of survival at three years

with the control treatment was 0.35. Then, the probability of survival in the test

group is expected to be 0.350.70¼ 0.48. The average is (0.35þ 0.48)/2¼ 0.415.

Thus the probability of the event is 1� 0.415¼ 0.585. Therefore, we will need

to enroll 252/0.585¼ 431 patients. This number must be rounded up to an even

number, 432. In conclusion, we will need 216 patients in each group in order to

observe 252 events.

Often a clinical trial does not establish a fixed follow-up time for the subjects.

Rather, patients are followed up for as long as possible until termination of the

study. Since patients are accrued progressively into the trial, some patients will be

observed for a longer period. For example, if a trial has an accrual period of six

months and patients are to be followed for a minimum of three years, then at the

conclusion of the study, three and a half years after the first patient was included, on

average the patients will have been observed for three years plus half the accrual

period, that is, for three years and three months. During this extra follow-up time

more events may have occurred, so we should take this into account when

computing the number of patients needed for the trial.
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In order to account for an accrual period and for the additional events occurring

in the follow-up period, the Freedman method computes the number of subjects

required as shown above, but the probability of the event is estimated from the

survivor function at time t plus half the length of the accrual period. Suppose

the accrual period for our clinical trial was six months. Say that the Kaplan–

Meier estimate of the survival probability at 39 months in the control group is

32%. Then, the probability of survival in the test group is expected to be

0.320.70¼ 0.45. The average is (0.32þ 0.45)/2¼ 0.385. Thus the probability of

the event is 1� 0.385¼ 0.615. Therefore, we would need to enroll 252/

0.615¼ 410 patients in order to observe 252 events.

An alternate method, Simpson’s rule, considers the probability of the event

at three time points to compute the number of patients required: at the end of

the minimum follow-up period, at the end of that period plus half the accrual

period, and at the end of that period plus the total accrual period. In our

example, we would need to estimate the probability of the event at 36 months,

39 months, and 42 months.

Suppose that the cumulative probabilities of survival in the controls at

those time points are 35%, 32%, and 28%. We calculate the probability of

survival in the test group as 48%, 45%, and 41%. The probability of the

event is computed as

PE ¼ 1� ð0:35þ 0:48Þ=2þ 4� ð0:32þ 0:45Þ=2þ ð0:28þ 0:41Þ=2
6

The result is 0.617. Therefore, we would need 252/0.617¼ 408 patients,

204 in each group.

It is also convenient to account for a proportion of patients that will withdraw

from the trial or that will be lost to follow-up, so-called patient attrition. The final

number of patients will be the computed number divided by one minus the

proportion lost. For example, if the computed number was 410 and it is expected

that 10% of the patients will be lost to follow-up, the total sample size should be

410/0.90¼ 456 or 228 patients per treatment arm.

11.11 Non-inferiority clinical trials

Until now we have always assumed that the objective of a clinical trial was to

demonstrate the superiority of one treatment over another. Indeed, most clinical trials

are conducted with this aim and they are planned and designed to reject the null

hypothesis H0: m1¼m2 and thus accept the alternative hypothesis HA: m1 6¼m2.

However, clinical trials can be planned with different objectives and different

H0 and HA. To better understand the reason for these designs and their applications,

it is convenient to review briefly the development process of new treatments.
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After a laboratory process of selection of new molecular entities with the

potential for being used clinically, these substances enter a period of clinical

experimentation and evaluation and acquire the status of investigational new drugs
(INDs). This period is divided into four phases of clinical development. In phase I,

or the dose determination phase, clinical trials are conducted on small numbers of

subjects in order to determine the appropriate dosage of the INDs. In phase II the

INDs are tested for the indications suggested by the theory in small to medium-

sized clinical trials, which may be comparative or non-comparative. The principal

aims of phase II clinical trials include the further definition of the dosage and an

initial assessment of the efficacy and safety. Phase II trials are mainly geared to the

identification of INDs which do not have enough activity to be used as medications.

Those INDs that show some activity and acceptable toxicity in phase II trials are

subsequently tested in phase III, the confirmatory phase, in randomized controlled

clinical trials versus the best available therapy. If the results of at least two well-

designed phase III clinical trials are conclusive of the efficacy of the IND and its

safety is at such a level that the benefits expected from its administration outweigh

the risks due to toxicity, and after an approval process conducted by the authorities,

the drug will eventually be marketed. Phase IV, the post-marketing phase, is

intended for the evaluation of the efficacy and safety of the drug on large samples of

patients and to identify potential additional indications for a medicine. These

clinical trials can be comparative or non-comparative and seek to reproduce the

conditions in the real world where the drug is used.

Although it is desirable that new drugs achieve significant gains in health,

sometimes a new drug may not have greater efficacy than the standard treatment but

may nevertheless represent progress in therapy. For example, the new drug may

have a more comfortable route or schedule of administration, may have a more

favorable safety profile, may be from a new chemical class with interesting

properties, or may represent a new paradigm for the treatment of a disease,

among others.

Because of this, the concept of equivalence trial was developed. This design

differs from the superiority trial because its objective is to demonstrate that the

difference in efficacy between treatments is no greater than a predefined margin.

This difference defines an equivalence margin and evidence in favor of the

equivalence of two treatments is obtained if the 95% confidence limits for

the difference between treatments in the primary efficacy variable do not exceed

the equivalence margin. Figure 11.9 illustrates on the left the rationale of

equivalence testing with examples of various possible outcomes and the respective

conclusions to be drawn.

In practice, the issue is not whether two treatments are equivalent, but whether a

new treatment is not inferior to the reference treatment, at least not by a clinically

important difference. These are the non-inferiority trials.

The non-inferiority margin is admittedly difficult to establish, perhaps even

more difficult than defining a MCID for superiority trials, and, as a rule, the non-

inferiority margin is much smaller than the MCID. The non-inferiority margin

should correspond to the largest loss of effect of the reference therapy that would be
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clinically acceptable. A commonly used approach is to estimate conservatively the

effect of the reference therapy from previously published clinical trials, as the lower

bound of the 95% confidence interval of the difference to a placebo in the primary

efficacy variable, and to decide what proportion of the effect of the reference

therapy should be retained by the new treatment. If several placebo-controlled

clinical trials of the reference treatment have been published, a combined estimate

of the 95% confidence interval can be obtained using meta-analysis, which will

be covered in a forthcoming chapter. For example, suppose that the 95% confidence

interval of the difference in the primary efficacy variable between the reference

treatment and the placebo is 12 to 35, smaller values indicating lesser efficacy.

Then, 12 is taken as a measure of the effect of the reference treatment. Suppose that

we decided that no more than 50% of the effect should be lost to the new treatment.

Thus, the non-inferiority margin would be set at 0.5� 12¼ 6. Usually no more than

50% of the effect of the reference treatment should be lost to the new treatment but,

depending on the specific clinical problem, smaller proportions may be selected.

One way of establishing non-inferiority is by computing the one-sided 97.5%

confidence interval for the difference between treatments. If the upper or lower

bound of the confidence interval, depending on the direction of the difference of

interest, is less than the non-inferiority margin, the test treatment will be considered

as non-inferior to the reference treatment. Figure 11.9 illustrates, on the right,

different results and the corresponding conclusions.

Non-inferiority can also be established with statistical tests. The hypothesis to

be tested is thus one-sided, and denoting by mC and mT the population means of the

primary efficacy variable in the control and in the test groups, and by d the non-

inferiority margin, the null and alternative hypotheses can be formulated as H0:

mC�mT� d and HA: mC�mT>d (or as H0: mC�mT� d and HA: mC�mT<d,

depending on the direction of what is considered inferiority).
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Figure 11.9 Interpretation of the results of equivalence (left) and non-inferiority

(right) trials depicted as two-sided 95% confidence intervals (left) and one-sided

97.5% confidence intervals (right). EQ is the equivalence margin and NI the non-

inferiority margin.
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For testing the null hypothesis we use a statistical test at the one-sided 0.025

significance level which, incidentally, has the same critical z-value as a two-sided

test at the 0.05 significance level. If the test rejects the null hypothesis that the

difference in efficacy between treatments exceeds the adopted non-inferiority

margin, then we may declare non-inferiority.

For example, suppose we want to test a new lipid-lowering drug for non-

inferiority against an already approved drug. We select the percentage change

from baseline in LDL cholesterol as the primary efficacy variable. After

reviewing the literature on clinical trials of the reference drug we conclude that

the average percentage change from baseline in LDL cholesterol after three

months of treatment with that drug is 42% with standard deviation 14%. We

choose as non-inferiority margin a difference less than 0.2 standard deviations,

that is, 0.2� 14%¼ 2.8%.

We now compute the sample size required to afford 80% power at the one-

sided significance level of 0.025 to detect a difference of 2.8% in the

percentage change from baseline between the two treatments. In the table of

the normal distribution we look for the values of z0.025 and z0.20, which are 1.96

and 0.84. We compute the sample size as 2� (1.96þ 0.84)2� 142 divided by

2.82, or 392 patients per treatment group.

Note that the sample size calculation for binary data is different in non-

inferiority and in superiority trials because in the latter the difference was zero

under the null hypothesis and non-zero under the alternative hypothesis, while

in non-inferiority trials under both the null and alternative hypotheses there is a

non-zero difference. Therefore, the variance of the proportions is assumed

constant for both hypotheses and the calculation is

n ¼ 2ðza � zbÞ2pð1� pÞ
d2

Now, suppose that the trial enrolled 380 patients for the reference treatment and

382 patients for the test treatment. Also assume that the mean and standard

deviation of the percentage change from baseline of LDL cholesterol was

46.3� 16.8% in the control group and 45.9� 16.4% in the test group. The null

hypothesis that we want to reject is that the difference between control and test

treatments is at least 2.8%, which we can represent by H0: mC�mT� 2.8%. If

we succeed in rejecting this hypothesis we will accept the alternative

hypothesis HA: mC�mT < 2.8% and declare non-inferiority. We will test the

null hypothesis with Student’s t-test

t/;n1þn2�2 ¼ ðmC � mTÞ � dffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

nC
þ s2

nT

q

where s2 is the combined estimate of the common variance.
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In our example, the combined estimate of the variance is (379� 16.82

þ 381� 16.42)/(380þ 382� 2) or 275.58. The estimate of the standard error of

the difference in sample means is the square root of 275.58/380þ 275.58/382

or 1.203. The division of 46.3� 45.9� 2.8¼� 2.4 by the standard error yields

t¼� 1.995.

On Student’s t distribution with 760 degrees of freedom the limit of the

one-sided 2.5% rejection region is �1.963, so the observed difference is within

the rejection region. The null hypothesis is rejected and non-inferiority of the

test treatment may be declared. Figure 11.10 illustrates the null hypothesis, the

rejection region, and the position of the observed difference.

The one-sided 97.5% confidence limit of the difference between the

reference and the test treatments is (46.3� 45.9)þ 1.963� 1.203¼ 2.76.

Therefore, the upper bound of the confidence interval is less than the non-

inferiority margin.

If non-inferiority is established, the new treatment can be tested for

superiority against the reference treatment. As the testing for superiority will be

done only if the non-inferiority test is significant, no correction for multiple

comparisons is required because a treatment that is superior must also be non-

inferior. However, the reverse is not true: that is, if in a clinical trial designed for

superiority the test treatment fails to show greater efficacy than the control, it is
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Figure 11.10 Testing for non-inferiority.
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generally regarded as not acceptable to switch for non-inferiority. This is

because the hypothesis of non-inferiority would be tested after the data had been

inspected. However, if the trial had been designed as a non-inferiority trial,

superiority could be tested before non-inferiority but then a correction for

multiple comparisons should be used.

Non-inferiority trials have a number of issues that make them more difficult to

interpret than superiority trials. One difficulty we have already mentioned is the

definition of the non-inferiority margin. Furthermore, the reference treatment must

have established efficacy and there must be evidence that in the non-inferiority trial

the reference treatment achieves the same level of efficacy. In some circumstances,

notably in trials of symptomatic treatments, a conclusion of non-inferiority does not

necessarily mean that the test treatment is effective. Indeed, its efficacy in that

population might be the same as a placebo. Therefore, non-inferiority trials may

require an assessment of assay sensitivity by including a placebo arm in order to

show that the efficacy of the reference drug is comparable to the efficacy of the

historical trials. In addition, the trial population in the non-inferiority trial must

have the same characteristics as the population where proof of efficacy was

demonstrated for the reference treatment, and the non-inferiority trial should be

similar to the historical trials regarding duration, schedule of evaluations, and

endpoints. This is known as the constancy assumption and is an essential

requirement for non-inferiority trials. In situations where this assumption may not

be allowed, the trial design should include a demonstration of assay sensitivity.

Furthermore, protocol deviations, patient withdrawals, and drop-outs should be

minimal in non-inferiority trials because their occurrence tends to decrease

differences between treatments.

Another type of clinical trial where one-sided significance tests are used is the

phase II futility trial. This design was developed with the aim of identifying early

in the drug development process those molecules whose efficacy is not large enough

to make them interesting medicines, thus saving resources for other more promising

molecules. These trials are often single arm, and historical controls are used for the

definition of the efficacy expected with the standard therapy. However, it is safer to

include a calibration group, that is, a sample of patients receiving the reference

treatment to assess whether the efficacy hypothesized from the historical controls

holds. A futility threshold is defined as the efficacy that the new molecule must

demonstrate in order to be considered a clinically important improvement on the

standard treatment. The trial is powered to test the null hypothesis that the efficacy

of the new molecule is greater than the futility margin. If the null hypothesis is

rejected, the conclusion is that the new molecule does not possess enough efficacy

and it is thus futile to proceed to a phase III trial. The null hypothesis is tested one-

sided with a one-sample statistical test. As we do not want to conclude too readily

that the development of a new medicine should be stopped, the one-sided alpha

error is usually set at a value of 0.10 or 0.15. On the other hand, we do not want to

miss the identification of those molecules that are ineffective, so we set a small beta

error, usually at 0.15 or 0.20. Thus, in this design the false negative rate now

corresponds to the alpha error and the false positive rate to the beta error.
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In problems where we have one sample mean m and the question is whether a

population mean m could be equal to a specified value m0 we use one-sample
tests. The null and alternative hypotheses for a two-sided test are thus H0:

m¼m0 and HA: m 6¼m0. The one-sample t-test is simply

t ¼ m� m0ffiffiffiffiffiffiffi
s=n

p
For proportions, using the normal approximation to the binomial distribution, if

p is the sample proportion and p0 is the specified value of the population

proportion, the test is

z ¼ p� p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ=n

p
In the case of futility trials m0 and p0 correspond to the futility threshold and

the null hypothesis is formulated one-sided. For example, suppose that from

historical data of clinical trials we have established that in a given disease the

standard treatment achieves a response rate of 35% and that a clinically

meaningful gain in efficacy would be an increase of no less than 10% in the

response rate. The futility threshold would thus be defined as a response rate of

45%. Therefore, the null and alternative hypotheses are H0: p� 45% and HA:

p < 45%. We wish to conduct a phase II futility trial of a new molecule and

choose a one-sided alpha error of 0.10 and a power of 0.85. The sample size for

a one-sided, one-sample test that a proportion equals a given value is computed

using the normal approximation as

n ¼ za
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ

p þ zb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞp� �2

ðp� p0Þ2

and the sample size for a one-sided, one-sample test of a mean is

n ¼ z/ þ zb
� �

s
� �2
ðm� m0Þ2

In this example za¼ 1.28, zb¼ 1.04, and the sample size is

n ¼ 1:28� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:45ð1� 0:45Þp þ 1:04

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:35ð1� 0:35Þp� �2

ð0:35� 0:45Þ2 ¼ 129

Suppose that we observed a response rate of 39% in 129 patients who were

administered a new treatment. The one-sample test is

z ¼ 0:39� 0:45ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:45� ð1� 0:45Þ=129p ¼ �1:37
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The p-value is 0.085 and we reject the null hypothesis, thus concluding

with 90% confidence that it is futile to take the new molecule to a phase

III trial.

11.12 Adaptive clinical trials

In section 11.9, when discussing the topic of dynamic randomization, we pointed

out the convenience of using the information that is collected during the course of a

clinical trial for the optimization of the study design. Dynamic randomization

addressed an ethical issue, but other design modifications could be introduced that

might have a positive impact not only on the ethics of the research, but also on the

success of the research. This is the motivation behind the concept of adaptive
clinical trials. In adaptive trials one or more analyses of the data are done while

the trial is being conducted. These analyses of partial trial data are called interim

analyses. The results of the interim analyses are interpreted by an independent

Data Monitoring Board (DMB) that may propose a number of design modifica-

tions. Figure 11.11 shows some examples of opportunities for optimization of a

clinical trial comparing two different doses of the test treatment with the standard

treatment.

Some of the most common modifications are as follows. (A) If the initial

estimates of the variance of the efficacy variable or of the treatment effect prove not

to be correct during the course of the trial, a sample size reestimation can be done,

increasing or decreasing the number of patients, or, in event-driven trials, increasing

A B C D 

E 
High dose 

Low dose 

Control 

Figure 11.11 Opportunities for optimization of a clinical trial design: (a) sample

size recalculation; (b) patient enrichment; (c) dynamic randomization; (d) premature

discontinuation of a treatment arm; (e) premature termination of the trial.
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or shortening the length of the trial. (B) The selection of patients could be modified

in the course of the trial if there is a suggestion that a particular subgroup of patients

has a different response to the test treatment, and further evidence regarding that

subgroup can be obtained with the enrichment of the sample with patients

belonging to that subgroup. (C) Randomization could be unbalanced if there is a

suggestion that one treatment arm might be superior, in order to offer patients a

greater probability of receiving the treatment with better outcomes. (D) One or

more treatment arms could be discontinued prematurely if the probability of

achieving a significant difference from the controls is very small. (E) The entire trial

could be terminated prematurely if there is accumulated evidence that the test

treatment has greater efficacy, or that it is futile to continue the trial to its normal

conclusion.

These interim analyses of the clinical trial data would of course increase the risk

of a type I error and, as we have already seen, the alpha error would increase with

the number of interim analyses.

Several times we have addressed the problem of inflation of the alpha error

when multiple comparisons are done on the same data. For example, consider that

three interim analyses were done in a clinical trial comparing two treatments. In

all, there will be four ‘looks’ at the data: the three interim analyses plus the final

analysis. If the significance level was set at 5% for each analysis, the probability of

obtaining a statistically significant difference just by chance in one or more

analyses can be calculated as one minus the probability of observing no

statistically significant difference in the four analyses. That is, 1� 0.954¼ 18.5%.

Therefore, if at the end of the trial a p-value of 0.05 is obtained, 0.05 is just the

nominal p-value and the true alpha error is actually 0.185. The more comparisons

are made, the greater is the inflation of the alpha error. At the first interim analysis

the nominal p-value corresponds to the true p-value, at the second interim analysis

the alpha error increases to 1� 0.952¼ 0.0975, and at the third it increases to

1� 0.953¼ 0.143.

One way of overcoming this problem of the progressive increase in the

alpha error due to multiple ‘looks’ at the data could be to use the Bonferroni

correction we mentioned in Section 7.4. Thus, for the example of three

interim analyses plus a final analysis, the Bonferroni correction would yield a

nominal p-value of 0.05/4¼ 0.0125 for each analysis and the overall alpha

error of 0.05 would be distributed evenly by the four planned analyses. Thus,

the true alpha error at the second interim analysis is 1� 0.987 52¼
0.025, at the third it is 1� 0.98753¼ 0.037, and at the final analysis

1� 0.98754¼ 0.049.

Inflation of the alpha error is not exactly as shown above because the sample

analyzed in an interim analysis is not the same as the sample in the final analysis

(it is a subsample of it) and also because the analyses are sequential, not in a

random order. These features of the multiple comparison procedure call for special

methods for correcting the inflation of the alpha error, generally called group
sequential plans.
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11.13 Group sequential plans

Earlier work in this area led to the proposal of the so-called Pocock boundaries

where the alpha error is distributed evenly between the planned analyses but

with more accurate values than the simple Bonferroni correction. So, for

example, for the three interim analyses and the final analysis the nominal

p-value is 0.0182, somewhat larger than with the Bonferroni correction. The

Pocock boundaries are tabulated as a function of the number of interim analyses

and the significance level. The method assumes that the interim analyses are

done at constant increments of the trial data. The boundaries define a stopping

rule for the trial whereby, if the nominal p-value obtained at an interim analysis

is less than the boundary, then a difference between treatments should be

declared and the trial stopped. Of course, other considerations are involved in

the decision to stop a trial, such as the consistency of the findings, the coverage

of the patient population, the risks incurred by the patients, budgetary aspects,

and so on. If a decision is made to stop the trial, the reported alpha error must be

the true alpha error, not the nominal p-value.

Two concerns have been expressed regarding the Pocock boundaries. One is that

they may lead to an early termination of the trial when sample sizes are still small

and a large treatment difference seen early in a trial might not be maintained at

subsequent analyses with a larger sample size. The other is that a trial may be

declared inconclusive despite a nominal p-value obtained in the final analysis that is

much smaller than the traditional 0.05. For example, a p-value of 0.02 in the final

analysis of a trial with three interim analyses does not allow one to reject the null

hypothesis of no difference between treatments. This is awkward because, had the

trial been conducted without interim analyses, the treatment effect would have been

considered different at a high level of statistical significance.

To avoid these problems, a different boundary was proposed, called the

Haybittle–Peto boundary. This boundary assigns a nominal p-value of 0.001 to

each interim analysis and of 0.05 to the final analysis (or the remaining p-value for

the final analysis, which is called the Bonferroni fix of the Haybittle–Peto

boundary), no matter how many interim analyses are performed. Of course, this

boundary is very conservative and a trial will be stopped early only if there is a very

large treatment effect.

Another type of stopping boundary is the O’Brien–Fleming boundary. This

method combines the idea of the Pocock boundary of distributing the alpha error

evenly by a number of predefined ‘looks’ at the data, with the idea of the Haybittle–

Peto boundary of reserving a large portion of the alpha error for the final analysis. In

this method, a difference between treatments is declared at each interim analysis if

the result of the test statistic multiplied by n/N, where n is the nth ‘look’ and N the

total number of ‘looks’ at the data, exceeds a value P(N, a). The value of P(N, a) is

a function of N and of the alpha error set for the trial, and can be found in

appropriate tables. For example, for a two-arm trial with three interim analyses

and a final analysis (N¼ 4), with an alpha error of 0.05, the tabulated coefficient

P(4, 0.05) is 4.170. Suppose that in the third interim analysis (n¼ 3) a total of
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60 patients in each group had completed the trial and that 52 responses had been

observed in the test treatment and 40 in the standard treatment. A chi-square test

would then yield a result of 6.708 with 1 degree of freedom. The quantity 6.708� 3/

4¼ 5.031 exceeds the rejection limit of 4.170 and superiority of the test treatment

may be declared. If a table of the values of P(N, a) is not available, an approximate

value is the chi-square statistic with 1 degree of freedom (3.84 for a¼ 0.05, 6.63 for

a¼ 0.01).

As mentioned above, with the O’Brien–Fleming boundary a trial may be

stopped in its early phases only if the difference between treatments is very large,

and most of the alpha error is saved for the final analysis. For example, with three

interim analyses and one final analysis the nominal p-values at each ‘look’ have

to be < 0.000 04 for the first ‘look,’ < 0.004 for the second, < 0.02 for the third, and

< 0.04 for the final one.

The methods just presented are the most commonly used ones among a variety

of methods proposed for the definition of stopping boundaries. Figure 11.12

summarizes the differences between the three methods, showing the respective

boundaries for a trial with three interim analyses and one final analysis.

All three methods have the inconvenience that the number of interim analyses

needs to be specified before the beginning of the trial and the number of patients

accrued between two consecutive ‘looks’ is assumed to be constant. Therefore,

when planning a trial, the number of interim analyses must be specified and, in

addition, the sample size determination must account for the loss of power due to

the several analyses (the loss of power exists in group sequential plans because

multiple ‘looks’ increase the probability of the beta error). Tables are available with

0

0.01

0.02

0.03

0.04

0.05

1 2 3 4
Look

N
om

in
al

 p
-v

al
ue

Figure 11.12 Nominal p-values for different methods of defining stopping

boundaries for sequential analyses of clinical trials: Pocock (gray circles);

Haybittle–Peto (white circles); and O’Brien-Fleming (black circles).
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correction factors that must multiply the sample size computed with the standard

methods. The adjustment is significant for Pocock’s boundaries but small for

O’Brien–Fleming boundaries. For example, if four ‘looks’ are planned, to maintain

power with Pocock’s boundaries the sample size has to be increased by about 20%,

and with O’Brien–Fleming boundaries only by about 2%. The planned sample size

is then divided by the number of ‘looks’ to obtain the number of patients with

complete efficacy data that must be accrued before each interim analysis.

11.14 The alpha spending function

The idea of distributing the pre-specified alpha error among the several ‘looks’ at

the data was further developed and led to introduction of the Lan–DeMets alpha

spending function. This new idea was to define the stopping boundaries as a

continuous function of the amount of information accrued during the trial. Thus, the

alpha spending function allocates some of the total pre-specified alpha error to each

fraction of the total information of the trial. Therefore, each interim analysis spends

a portion of the total allowable alpha error for the trial. Figure 11.13 shows an

example of an alpha spending function. At the first interim analysis (look 1) the trial

will be stopped for efficacy if the nominal alpha error is less than 0.008. Therefore,

about 0.008 of the total alpha error is spent in look 1. In the second interim analysis

the cumulative alpha error defined by the alpha spending function is 0.015 and

the alpha error allocated to the second look is 0.015� 0.008¼ 0.007. For the

final analysis the allocated alpha error is 0.035 because the remaining 0.015

(¼ 0.008þ 0.007) has already been spent in the two interim analyses.
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Figure 11.13 Example of an alpha spending function illustrating two interim

analyses and the alpha error spent between the two analyses.
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In the Lan–DeMets group sequential method, an alpha spending function is

defined before the beginning of the trial. As we have seen, this spending function

allocates some of the total alpha error to each interim analysis according to the

fraction of the total information of the trial that has been accrued up to the time of

the analysis. For trials with binary or interval efficacy variables, the information

fraction is approximately the observed complete cases divided by the expected

maximum sample size; for event-driven trials it is approximately the observed

events divided by the expected total number of events. The spending function can

be defined in many ways but very often either a Pocock type or an O’Brien–Fleming

type of function is adopted (Figure 11.14). The first is an aggressive approach used

when a large treatment effect is anticipated and a large amount of the alpha error is

spent in the earlier phases of the trial in an attempt to stop it after a small number of

patients. The second is a conservative approach, allocating most of the alpha error

to the final analysis.

The alpha function determines, in turn, the boundaries for the stopping rule. At

each interim analysis a test statistic of the comparison between treatment arms is

computed from the observations accrued since the previous look at the data. This

result is combined with the test statistics obtained at each of the previous analyses,

taking into account the increment of information between analyses, to obtain the

test statistic for that interim analysis. If this test statistic exceeds the boundary

defined for that point in time, termination of the trial may be considered.

Figure 11.15 illustrates an example of an alpha spending function with O’Brien–

Fleming-type boundaries showing the test statistic obtained at sequential interim

analyses. At the sixth interim analysis, with 80% of the trial information accrued,

the test statistic crossed the boundary and the trial was stopped.
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Figure 11.14 Types of alpha spending functions: Pocock type (gray line) and

O’Brien–Fleming type (black line).
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The advantage of the Lan–DeMets alpha spending function is that neither the

number nor the timing of the interim analyses need to be pre-specified, and the

flexibility afforded by this method is at the cost of a minimal loss in statistical

power. What needs to be pre-specified, though, and cannot be changed during the

trial, is the alpha spending function.

The group sequential approach can be applied to the definition of stopping

rules for non-inferiority and futility as well. An alternative approach to

monitoring a trial for efficacy or futility is stochastic curtailment, where the

decision to stop the trial is based on an assessment of conditional power.

Conditional power is the conditional probability of a significant result at the

end of the trial given the data observed thus far. Inasmuch as a trial may be

stopped when superiority of one treatment over another is shown, making futile

the continuation of the trial, so can a trial also be stopped if the probability of

reaching a statistically significant difference in the final analysis is below a

predefined threshold (typically 10 or 15%), given the results observed in an

interim analysis. Conditional power is usually computed under different

hypotheses, often under the original assumptions of both treatment effect and

variance of the primary efficacy variable, under the original assumption of the

treatment effect but with the empirical estimate of variance, under the empirical

estimate of both the treatment effect and variance, and under the null hypothesis

of no difference between treatments.
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Figure 11.15 Illustration of a sequence of interim analyses in a clinical trial using

the alpha spending method with O’Brien–Fleming-type boundaries. The open

circles represent the value of the z statistic at each interim analysis. At the sixth

interim analysis the z statistic crossed the boundary and a recommendation for

early stopping was issued.
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11.15 The clinical trial protocol

As with any research project, the protocol is an essential tool for planning and

conducting a clinical trial. The study protocol is structured in several sections,

according to a fairly uniform methodology.

The protocol begins with the title page, identifying the authors, the sponsor of

the trial, the participating centers, and expected dates for the beginning and end of

the study. The following section is a synopsis of the trial, where the most important

methodological aspects (objectives, trial design, efficacy criteria, number of

patients, main inclusion and exclusion criteria, study treatments, and statistical

methods) are described concisely. The protocol itself begins with a review of the

treatment of the disease in question, a report of previous experience with the

treatments that will be compared, and a justification of the scientific and clinical

relevance of the clinical trial, the choice of the comparator if any, followed by the

presentation of the general objectives.

The main body of the protocol begins with the formulation of the specific

objectives of the study and the identification of the experimental design which will

be adopted. The section on study treatments describes the medicines to be tested,

their formulations, presentation, dose, and schedule of administration. Next comes a

general definition of the study population followed by the detailed presentation of

the inclusion and exclusion criteria. The primary and secondary efficacy variables

and criteria are described in the section on evaluation methodology, along with a

description of the methods used for their measurement. The methodology and

procedures of randomization are described in detail in their own section. If blinding

is to be used, a section should describe the methods and procedures to achieve and

maintain blinding throughout the trial.

The section called study plan describes the flow of the trial, that is, what the trial

periods are (washout, placebo run-in, dose titration phase, treatment phase, follow-

up, long-term extension, and so on), the schedule of patient visits, all procedures

performed at each observation of the patient, and all the examinations that the

patient will perform.

A further section describes the concomitant treatments, that is, all the

treatments, pharmacological or not, that may or may not be administered to

the patient during the trial. If during the clinical trial a patient requires one of the

treatments that are not allowed, and if there is no suitable and allowed substitute for

that treatment, the patient will usually have to be discontinued from the trial. The

section on patient discontinuations describes the circumstances that should lead to

the discontinuation of a patient and the procedures to be undertaken in that event.

Usual causes of discontinuation include, in addition to the administration of

medication that is not allowed, poor patient compliance to the study medication,

delays or failure to show up at the study visits, adverse events requiring

discontinuation of the study medication, intercurrent disease, the patient’s desire

not to continue in the trial, and in general any reason where the investigator

considers continued participation in the trial is not in the best interest of the patient.

Another section describes how adverse events will be recorded and how they will be
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managed. A section on the ethical aspects of the research should discuss any

identifiable ethical issues raised by the clinical trial and the procedure for obtaining

informed consent from the patients.

The patient information describes the clinical trial, its objectives, and risks in a

manner that is intelligible to the patient. This document must be delivered to the

patient prior to study entry and must be accompanied by a verbal explanation of its

content. The document must clearly present the justification and objectives of the

clinical trial, all the procedures that will be performed, and, in particular, the

eventual risks and discomforts caused to patients because of their participation in

the trial. It should explain in what ways the trial procedures deviate from normal

clinical practice and what treatment modalities are available for that clinical

condition. The document should inform about the destination and uses of the data

that will be collected, and what dispositions are in place to protect the

confidentiality of the information and the privacy of the patient. Finally, it must be

clearly explained to the patient that he or she is entirely free to accept or decline

participation in the trial and that, having agreed to participate, he or she may at any

time and without justification terminate participation in the trial. The informed

consent form is a document that the patient signs, confirming that he or she has

been informed and has understood the procedures of the trial.

The protocol ends with two technical sections that detail the statistical

methodology. In one of the sections the planned sample size must be justified,

presenting the assumptions made regarding the expected treatment effect and the

power of the trial. If interim analyses are planned the adopted methodology should

be presented. The other section is the statistical analysis plan. This section includes

the precise definition of the study variables, the formulation of the research

hypotheses, all the analyses that will be performed, the subject’s eligibility criteria

for each analysis, the statistical tests that will be used or the terms that will be

included in regression models, the secondary analyses, and so on. Each of these

aspects will be developed in the next chapter, where the main aspects of the general

methodology for the analysis of clinical trials will be discussed.

11.16 The data record

In addition to the study protocol, before the beginning of the trial it is necessary to

design the forms where the data will be recorded. These forms are grouped in a file

for each individual to be included in the trial, usually called the Case Report of

Form and abbreviated to CRF.

The CRF is intended not only for the recording of the data necessary to

investigate the problem under study, but also to document all the relevant information

related to the patient’s participation in the trial, all observed clinical findings, all

coexisting diseases and any illnesses occurring during the trial period, any adverse

events, and, in general, all the data related to the health status of the patient.

The CRF is typically structured in several sections. The first sections are for the

identification data of the subject, the patient demographics, and verification of the
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inclusion criteria and exclusion criteria. The following section is for recording data

that characterizes the disease under study and includes data on the characteristics of

the disease (start date, major manifestations, complications, and so on) and, if

applicable, on the prior exposure to risk factors or aggravating factors (e.g.,

smoking, alcohol).

The characterization of the general clinical condition of the patient is recorded

in the following sections and includes data regarding past medical history with the

specification of previous diseases, surgical interventions, and medications, with the

respective dates. Every disease present at the time of inclusion must be recorded.

All the findings on the physical examination should be recorded in a separate

section for future reference, because it is important to check whether any findings

observed during the trial were already present at baseline or appeared during the

study period.

The following sections are repeated for each scheduled visit during the trial and

are intended to record the values of the efficacy criteria, vital signs (temperature,

heart rate, and blood pressure), patient compliance to the study medication, and any

concomitant medication prescribed for other clinical conditions of the patient.

In any clinical trial, it is always necessary to monitor and analyze the toxicity

of the investigational products being used. Safety and tolerability are evaluated

through clinical laboratory safety parameters and the recording of adverse events.

The clinical laboratory safety parameters consist of a panel of tests that

monitor possible effects of the research products on those organ systems most

often involved in drug toxicity – hematopoietic, liver, and kidney. Adverse

events include all unfavorable events for the patient occurring from entry to the

study to its end, regardless of their relationship to the study medication. Thus, not

only are adverse symptoms and signs mentioned or observed in a patient (e.g.,

headache, eczema) considered, but also all intercurrent illnesses, deaths from any

cause, hospitalizations, visits to an emergency room, voluntary or accidental

overdose, and also traumas, accidents, and, in general, all events in the medical

sphere occurring during the study. This means that the divorce or death of family

members, for example, despite being unpleasant events, are generally not

considered adverse events.

Finally, additional sections are used to record treatment allocation, compliance

to the medication, deviations from the study protocol, and causes of patient

discontinuation from the trial.
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12

The analysis of experimental

studies

12.1 General analysis plan

We saw in Section 11.1 that the goal of many experimental studies is the

establishment of a cause–effect relationship between an intervention and an

observable response. In the context of clinical trials, the aim is to assign a

therapeutic response to a particular experimental medicine or therapeutic regimen.

We have mentioned several times that in order to establish this relationship it is

necessary to produce evidence, in the same study, for an order factor and for an

association between the intervention and the response, and that plausible alternative

explanations for the observed response can be excluded with reasonable confidence.

It turns out that the data analysis itself opens up many opportunities for

alternative explanations for the results. The choice of the statistical methods, the

exclusion of individuals or observations from the analysis, and multiple compar-

isons are examples of procedures that, when inadequately performed, can increase

the likelihood of false positive results.

For this reason, a large part of the full statistical analysis of clinical trials is

concerned with the exclusion of the possibility that the obtained results are fortui-

tous. The analysis of clinical trials is highly standardized and uniform. International

standards published by the International Conference on Harmonization (ICH),

which have been adopted by many countries, regulate the methodology of the

analysis of clinical trials. These standards determine the procedures to be used in

data preparation and cleansing, in the statistical methods, and in the presentation of

the trial results.

Basically, the data analysis of a clinical trial is processed in seven sequential

stages. First of all, it is necessary to clean the data. Understandably, a trial never

runs exactly as predicted. On some occasions the procedures set out in the protocol
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are not fully met, such as when a patient takes a medication that is not allowed.

Sometimes efficacy data is missing, which happens in patients who abandon the

trial before the last scheduled observation. These situations must be analyzed and

fully resolved before moving on to the next phase.

When there are problems with the data of some subjects, or if they did not

comply with the trial protocol as planned, or if they did not have all of the eligibility

criteria for the trial, there is the question of whether or not these cases should be

included in the analysis. It is therefore necessary to decide which individuals are

eligible for analysis, as well as which of their observations contain valid data.

After the set of data that will be analyzed is identified, the next step is the

preparation of the data for statistical analysis. For example, it may be necessary to

transform variables, dichotomize some variables, create dummy variables, create

interaction terms, and so on.

The fourth phase corresponds to the main statistical analysis of the primary and

secondary study variables, which must be performed strictly as described in the

statistical analysis plan in the study protocol. Any deviation from the plan must be

fully documented and justified.

After the definitive results of the statistical analysis have been obtained, it is

necessary to check the robustness of the findings. While cleansing the data and

selecting the population valid for analysis it is necessary to make several decisions.

Consequently, it is important to verify that the results obtained in the main analysis

are not particularly sensitive to the decisions that have been made. We do this

through several secondary analyses.

In the sixth phase, additional analyses of a purely exploratory nature are done,

with the aim of obtaining further information about the treatments. Typically, these

analyses attempt to identify prognostic factors of therapeutic response and patient

attributes that define subgroups of subjects with a different response to treatment.

Finally, in the seventh phase, the safety and tolerability of the treatments are

evaluated. Data analysis of safety data is mostly descriptive.

In the following sections we will discuss each of these phases in greater

detail. The subject of clinical trials is very extensive and in many aspects con-

troversial, so it cannot be discussed here in full. In the following sections the

discussion will focus on the main aspects in which an inappropriate statistical

methodology may eventually contaminate the study by factors external to the

experience, thus compromising the assignment of causality of the observed

effects to the test treatment.

12.2 Data preparation

Protocol deviations represent the main indicators of the quality of conduct of a trial,

yet it is not common to see in the literature a clinical trial report that includes a

description of their number and type.

It is customary to classify protocol deviations into three different types. Minor

deviations are small deviations from the protocol that in all likelihood will not

affect the results, for example, a delay of a few days in a study visit or the omission
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of one or two administrations of the treatment. Major deviations are not avoidable

and eventually affect the final results of the trial. Examples of major deviations are

deaths, patient drop-outs, and discontinuations due to intercurrent diseases, adverse

events, or therapeutic inefficacy. Naturally, as these deviations are unavoidable, they

are by themselves not indicators of the quality of conduct of the trial. However, if

they are sizeable in number then they may reflect an inadequate design of the

clinical trial, perhaps because its duration is too long, or because it included patients

who had little chance of complying fully with the procedures of the trial. The third

type is protocol violations. Examples include the administration of medications

that are not allowed during the trial, the administration of the wrong treatment or the

wrong dose of the study medication, failure to meet the schedule of study visits, or

the omission of patient visits. These violations almost certainly have an influence on

the trial results and possibly reflect faulty administration of the trial or poor

cooperation between the investigator and the trial subject.

After all the protocol deviations have been identified, it is necessary to decide

which assessments are valid for analysis. It is usually considered that the study

visits following a protocol violation are not valid for analysis as their data does not

reflect the treatment effect. Consequently, all efficacy data pertaining to those visits

are ignored and treated as missing data.

The handling of missing data is thus the next issue that arises in the analysis of

clinical trials. The main causes of missing data are drop-outs and premature

discontinuations from the study. In these cases there is no efficacy data after the last

time the patient was observed.

The most commonly used method for dealing with missing data is to replace the

missing values with the values observed in the last valid assessment. This method is

called the LOCF (Last Observation Carried Forward). With this method one

assumes that the value of the last valid observation is the best result obtained with

the treatment and the values that will be compared between treatment groups are

thus those of the last valid observation. It is generally agreed that the LOCF method

is acceptable as long as it not applied to more than about 10% of the patients.

In clinical trials for diseases characterized by a progressive decline, such as

degenerative diseases of the central nervous system, the LOCF method is not

suitable. In these situations, the sooner a patient abandons the study, the better the

patient’s state and therefore the value of the efficacy criterion does not reflect the

best result obtained with the treatment. A method frequently used in these situations

is interpolation by fitting a least squares line to the observed values over time,

where the missing values are estimated from the slope of the line and the time

intervals between visits.

12.3 Study populations

After the study data have been prepared, apparently we should be able to proceed to

test the differences between treatments. However, before that we will need to decide

upon the study population to be analyzed. This means that, contrary to what would
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logically be assumed, the analysis does not necessarily focus on all the subjects

included in the trial.

The explanation for this is illustrated schematically in Figure 12.1. Within the

total number of subjects enrolled in a clinical trial, some may not meet all the

inclusion and exclusion criteria. Moreover, from the total number of eligible

individuals, only a proportion will have completed the trial and, among these, only a

few did so with no protocol violations.

There is, therefore, the matter of deciding which of these trial populations will

be analyzed. The question is not an easy one because arguments for and against

each population can easily be produced. For example, we could say that the best

population for analysis would be that of all eligible individuals who completed the

trial with no protocol violations, because the responses observed in these patients do

reflect the effect of the treatment when administered during the period of time

necessary for its action and according to the proposed does and schedule in the

patient population for which the treatment would be indicated. On the other hand,

we could argue that selecting that particular study population would exclude from

the analysis many individuals in whom the treatment response was unsatisfactory

and who, for that reason, have abandoned the trial, leaving us to compare only those

patients who were having some benefit with the treatments. This, of course, would

significantly bias the results.

Intuition tells us that the primary efficacy analysis of clinical trials should be

conducted in the study population which completed the trial with no protocol

violations. Although this seems logical, the problem with this approach is that the

exclusion of subjects from the analysis will invalidate the purpose of randomization.

Remember that randomization gives us the assurance that the distribution of patient
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Figure 12.1 Several populations that can be identified in a clinical trial.
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characteristics at the beginning of the trial is identical in the populations from where

the groups were sampled. Now, if non-compliant patients are excluded from the

analysis, then we can no longer assume the equality of populations at baseline. The

systematic exclusion of particular types of patients will introduce a bias with an

effect equivalent to a selection bias and, consequently, any differences between

treatments at the end of the trial may be due to the differences between the patient

populations, not to a treatment effect. Therefore, we had gone through all the

trouble of randomizing patients to treatment groups to make sure that their

characteristics had identical distributions in the population, only to ruin that effort

by excluding patients from the groups after they have been included. So how can we

analyze the data if some patients have abandoned the trial before efficacy data could

be obtained from them?

A solution to this dilemma was found in the principle of the intention to treat.

Basically, this principle states that what is being evaluated in a clinical trial is not

the pharmacological activity of a substance, but a decision between two or more

distinct therapeutic options. In other words, according to this principle, when we

conduct a clinical trial comparing treatments A and B, what will be compared are

the results obtained with the decision to opt for treatment A versus the results

obtained with the decision to opt for treatment B. If you look back at the figures in

the previous chapter showing diagrams of clinical trial designs you will notice that

the intervention is represented by an arrow pointing to a specific moment in time.

This arrow represents the moment when a decision is made to prescribe one or

another treatment and the outcome of that decision is what is actually compared in

the intention to treat approach.

In practical terms, the intention to treat principle states that all subjects included

in a clinical trial must be analyzed. Granted, this method will most likely

underestimate the actual treatment effects, because patients abandon a trial before

the full effect of the treatment is expressed, but this is of much less importance than

introducing bias into the trial.

Therefore, the analysis of the population which completed the study protocol

without violations estimates the efficacy of the treatment itself when administered

under ideal conditions. It is said that this method adopts an explanatory approach of

treatment effects.

On the other hand, the intention to treat analysis takes a pragmatic approach, that

is, it estimates the outcome of a therapeutic decision in near real-world conditions.

Therefore, the treatment effects estimated with the intention to treat approach repre-

sent treatment effectiveness rather than efficacy. This approach is convenient for

supporting decision making in actual clinical practice because what matters from the

clinical perspective is the result actually obtained with a treatment decision, not the

expected outcome in ideal patients and conditions of administration.

Accordingly, under the intention to treat principle one should not exclude drop-

outs, treatment discontinuations, and errors or omissions in the administration of

treatments, because these events happen in the real world and in the same pro-

portion in which they occur in the study population. The mean values of the efficacy

criteria effectively observed in this population are, in short, the true therapeutic
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activity of the treatment minus the poor results observed in patients who do not

complete a course of treatment as prescribed. This quantity is estimated without

bias in the intention to treat population.

Nowadays it is widely accepted that the primary efficacy analysis of a

superiority clinical trial must be based on the intention to treat population, but the

definition of this population is not consensual. Some authors consider that all

randomized patients must be included in the intention to treat population, but most

accept that the intention to treat population consists only of those randomized

subjects who were eligible for the trial. However, the exclusion of subjects not

eligible according to the inclusion and exclusion criteria is acceptable only if that

decision is clearly independent of the administered treatment and the outcome.

This definition of intention to treat, however, has raised some objections from

the community of clinicians who found it difficult to understand, for example, the

logic of including in the population for analysis those patients who abandoned the

trial before even taking a dose of the study medication. Of course, if we think in

terms of comparing therapeutic decisions this aspect raises no concern since in the

real world some patients will also not take the prescribed medication.

As a compromise, statisticians and clinicians have somewhat relaxed the

definition of the intention to treat population so that trial results would be easier to

understand and better accepted by clinicians, without appreciable impact on the

results. One consequence of this broader concept of the intention to treat is that,

when reporting the results of a clinical trial, it is not sufficient to mention that the

analysis was done on the intention to treat population – it is necessary to define
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Figure 12.2 Study populations eligible for analysis.
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what is understood by intention to treat. Figure 12.2 illustrates several populations

for efficacy analysis of a clinical trial, together with the acronyms and their

common designations.

Perhaps the most common definition is of all eligible patients who received at

least one administration of the study treatment and who have some efficacy data;

that is, they remained in the study at least until the first visit in which efficacy data

was obtained, which is usually called themodified intention to treat population. It

is generally accepted that the bias caused by the exclusion of patients from analysis

will not be significant as long as they do not exceed 5% of the total eligible patients.

If this happens, one should select the on treatment population (also called the all

patients treated population), which includes all eligible patients who received at

least one administration of the study treatment and may or may not have efficacy

data. If this population is still less than 95% of the eligible patients, the analysis

should be performed on the intention to treat population.

International standards concerning the analysis of clinical trials for the registra-

tion of new medicines require that the efficacy analysis always includes, in addition

to the intention to treat population according to one of the above definitions, an

analysis of the all randomized patients population, that is, all randomized patients,

whether or not they were eligible for the trial, and an analysis of the population

which completed the trial without protocol violations. The latter is called the per

protocol population. The rationale for doing analyses in different populations will be

explained later, when we consider secondary analyses of clinical trials.

12.4 Primary efficacy analysis

Once the population for the primary efficacy analysis has been identified, the next

step is to define the measure of efficacy that will be compared between groups. In

clinical trials analyzing the time to an event, the efficacy variable is naturally the

occurrence of the event and the time from baseline to the event or till censoring

occurred. In many trials the efficacy variable is a binary variable encoding the

success or failure of a treatment according to a previously agreed definition of

success, and patient discontinuations are considered failures. When the efficacy

criterion is ordinal or interval, the usual practice is to use the last observed value,

that is, the value obtained at the last valid observation of the efficacy variable. With

interval-scaled efficacy criteria, and with some ordinal-scaled criteria that are

assumed to be measuring an interval-scaled underlying attribute, the efficacy

variable is often defined as the change from baseline, that is, the difference from

the last valid observation to the baseline value of the efficacy criterion in each

subject. If the efficacy criterion is measured in a ratio scale, then the percentage

change from baseline can be used, that is, the change from baseline divided by the

baseline value.

An analysis using one of the latter two measures has greater power than a

comparison of the last observed value because the variability between subjects is

eliminated, thereby substantially reducing the variance of the efficacy criterion.
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However, they have the drawback of making the meaning of the difference between

treatments sometimes more difficult to interpret. In addition some precautions must

be taken in the analysis when the efficacy variable is the change from baseline.

In fact, as we saw in Section 11.4, due to the phenomenon of regression to the

mean we expect that individuals who have at baseline a more extreme value of the

efficacy variable will also have a greater change from baseline at a later assessment.

Thus, the group with the higher mean value of the efficacy variable at baszeline is

likely to be favored in the comparison of changes from baseline.

For this reason, whenever we use the difference from baseline as the efficacy

variable, we need to adjust the analysis by the baseline value. The proper method is,

as we already know, a multiple regression analysis in which the dependent variable

is the change from baseline and the independent variables are one or more dummy

variables coding for the treatment groups and the baseline value of the efficacy

variable. This model, adjusting for the baseline value of the dependent variable, is

called analysis of covariance, sometimes abbreviated ANCOVA.

The next aspect to be considered is whether or not it is a multicenter clinical

trial. In this case, the analysis should be stratified by study center as this will afford

a bit more power to the trial by removing the variability of the efficacy variable

between centers. However, in order to do a stratified analysis, differences between

treatments are required to be uniform across study centers. In the section on meta-

analysis, the reason for this requirement will be explained in greater detail.

Therefore, in order to verify that a stratified analysis can be performed, first we

must test the homogeneity of the differences between groups across the centers with

a test of the treatment by center interaction. This analysis may be done with anova

or with multiple regression if the efficacy variable is interval, or with logistic

regression if it is binary. It is customary to use as the significance level for the

interaction test a value of p < 0.10 or p < 0.15 due to the low power of the

interaction test.

If the interaction test is negative, the stratified analysis is done with a multiple

regression or a logistic regression model including dummy variables encoding the

study centers. If the test is significant this means that the difference between

treatments is variable from one center to another and it is not appropriate to

average the treament with a stratified analysis. Thus, the distribution of patients

by center should be ignored, by pooling all patients from each study arm into a

single group.

If the trial was stratified by patient attributes, the analysis should also be

stratified but, as we have just seen, only in the case where no interaction exists

between treatments and strata. For this analysis we use a regression model with

dummy variables encoding the treatments, the centers, and the strata, and

interaction terms that are the product of treatment with strata. If the interaction is

not significant this means that treatment effects are the same across all strata and

may therefore be averaged to obtain a common estimate of the treatment effect, so

the analysis is done with stratification. If the interaction is significant, it is not

appropriate to pool the data from all patients, ignoring the strata. Therefore, the

efficacy analysis must be done and reported separately for each stratum.
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The data analysis in the presence of treatment by center and of treatment by

stratum interactions is different because strata are considered a fixed effect and

centers a random effect. A variable is a fixed effect if its values or levels are

purposively selected for a study because they are the only levels we are interested

in. Therefore, no generalization to a population beyond the selected levels of that

variable is intended and we may or may not be interested in drawing conclusions

about that effect, for example, by making comparisons between levels. A variable is

a random effect if its levels are a random sample of all the levels existing in a

population, we want to generalize our results to all the levels that could have been

selected, and we have no intention of drawing conclusions about that effect.

Accordingly, if the trial centers had been purposively selected to represent specific

health care settings and we wished to draw conclusions about differences in the

treatment effect between those settings, then the centers would be a fixed effect.

This is not the case in multicenter clinical trials, where several centers are included

in the analysis because we want to control for the extent to which they account for

the variance of the efficacy variable.

The primary efficacy analysis may be adjusted by several prognostic variables.

The rationale for this is that, although in theory randomization will ensure that the

treatment groups are samples from populations with identical distribution of all

patient attributes, in practice this may not be the case because clinical trials are

based on convenience samples, not on probability samples. Therefore, as a

safeguard for accidental imbalances in the distribution of important prognostic

variables across study groups that might result in confounding, one may adjust the

analysis by those variables.

12.5 Analysis of multiple endpoints

Some diseases require the assessment of multiple primary efficacy criteria because

the objective of treatment is the improvement of several manifestations of the

disease. In such cases, evidence of efficacy is obtained only if significant dif-

ferences are shown for all primary efficacy criteria. For example, in Alzheimer’s

disease, a chronic progressive degenerative disease of the central nervous system,

the evaluation of treatment efficacy requires the simultaneous demonstration of

a decrease in the loss of cognitive function and a patient impression of a positive

change in health. In order to maintain the overall alpha error at the 5% level, we

can divide 0.05 by the number of primary efficacy variables and allocate

equal amounts of the alpha error to each comparison. For example, in a trial on

Alzheimer’s disease, we can divide the alpha error by the two comparisons and

allocate 0.025 to each comparison. With this procedure, the probability of a false

positive test under the null hypothesis of no difference between treatments is

one minus the probability that the two tests are non-significant, that is,

1� 0.9752¼ 0.0494, a value that does not exceed 0.05. Therefore, this procedure,

known as the Bonferroni correction, guarantees control of the type I error at

a given level alpha in a situation of multiple comparisons. Technically, the overall
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alpha error is called the family-wise error rate (FWER), that is, the probability of

one or more false positives (or type I errors) when multiple hypotheses tests are

done. The Bonferroni correction is a simple and effective method for controlling

the FWER and, because it guarantees that the alpha error is not exceeded, this

method is said to provide strong control of the FWER. Naturally, when this

method is used, the estimates of treatment differences must be presented as

adjusted 95% confidence intervals. In this example, the adjusted 95% confidence

interval corresponds to the 97.5% confidence interval.

In other situations, the primary efficacy criteria will be measuring a number of

distinct features of a disease, and in this case differences are not required to be

shown in all primary criteria. For example, a clinical trial of a disease-modifying

agent for rheumatoid arthritis, in addition to the primary objective of treatment,

which is a clinically important improvement in the disease symptoms and signs

assessed with a standardized scoring system, may attempt to demonstrate additional

benefits to the patients, such as a decrease in structural joint damage, an

improvement in a score of health-related quality of life, a decrease in the duration

of morning joint stiffness, and an improvement in a score of activity of daily living

and function.

In this case, with five primary efficacy variables and using the Bonferroni

correction, each null hypothesis would be rejected only if the nominal p-value were

less than 0.01. This means that we were requiring the same strength of evidence for

a conclusion of superiority in the primary objective of treatment and in each of the

other variables, which might not be reasonable.

Therefore, we could define a testing strategy whereby we would allocate some

of the type I error to the test of the primary objective of treatment, and the

remainder to the set of four tests on the other efficacy variables. For example, the

most important comparison could be tested at a nominal p-value of 0.025 and each

of the other four comparisons at 0.025/4¼ 0.006 25. The FWER would be

1� 0.975� 0.993 754¼ 0.049. We can allocate the alpha error any way that seems

better. For example, we could allocate 0.035 to the test of the primary treatment

objective and 0.015 to the set of the remaining four tests. The FWER would be

1� 0.965� 0.996 254¼ 0.049.

The Bonferroni correction is rather conservative and in a situation like this it

may not be the most efficient method for controlling the alpha error. A number of

less conservative methods providing strong control of the FWER have been

proposed, but the two most commonly used are the Holm–Bonferroni and the

Hochberg procedures.

In the Holm–Bonferroni procedure we begin by performing all the statistical

tests without adjustment for multiplicity. The nominal p-values are evaluated

sequentially in ascending order at decreasing significance levels defined by the

allocated FWER divided by the number of performed comparisons minus the

number of previously tested hypotheses. The procedure stops the first time we fail to

reject a null hypothesis and the remaining hypotheses are not rejected.

In the Hochberg procedure we go from the largest to the smallest nominal

p-value and evaluate each one sequentially at increasing significance levels defined
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by the allocated FWER divided by the number of hypothesis tested thus far. The

procedure stops when we reject a null hypothesis, and then all the remaining

hypothesis are also rejected.

For example, say that in the rheumatoid arthritis trial the set of tests of the four

variables had been allocated 0.025 of the type I error. Suppose that the results

of the comparison between treatments were: structural joint damage p¼ 0.004,

quality of life p¼ 0.02, morning joint stiffness p¼ 0.007, and activities of daily

living p¼ 0.05.

The Holm–Bonferroni procedure is as follows. The smallest p-value is

0.004 and, being less than 0.025/4¼ 0.006 25, we reject the null hypothesis.

The next smallest p-value is 0.007, which is less than 0.025/3¼ 0.0083, and so

we reject this null hypothesis as well. The next smallest p-value is 0.02, which

is larger than 0.025/2¼ 0.0125. Therefore the procedure stops and we do not

reject this null hypothesis or the remaining hypotheses. Accordingly, we have

evidence of a statistically significant treatment effect for structural joint

damage and duration of morning stiffness, but not for quality of life and

activities of daily living.

In the Hochberg procedure we start with the largest p-value, 0.05. Since this

value is greater than 0.025 we do not reject the null hypothesis. The next largest

p-value is 0.02. As this value is larger than 0.025/2¼ 0.0125 we also do not

reject the null hypothesis and proceed to the next largest p-value, 0.007. This

value is smaller than 0.025/3¼ 0.0083. Consequently, the procedure stops and

we reject this null hypothesis as well as all the remaining hypotheses. The

conclusions of the analysis are the same as above.

These methods are called closed testing procedures. A closed testing

procedure is a general method for performing multiple comparisons while

providing strong control of the overall type I error. Both methods are less

conservative than the Bonferroni correction. The Hochberg procedure is the most

powerful of all but has the assumption that the p-values are independent, while the

Holm–Bonferroni procedure makes no assumptions. The downside of closed testing

procedures is that adjusted confidence intervals cannot be computed.

The rheumatoid arthritis trial could also be analyzed with a different strategy.

We could consider that the comparison of the four less important efficacy variables

would be of interest only if we had first obtained evidence of a treatment effect on

the primary objective of the treatment. Thus, we could design a hierarchy of

analyses, starting with the testing of the more important outcomes and proceeding

to the secondary outcomes only if a significant difference had been shown.

This strategy is known as a gatekeeping procedure. The basic idea is to group

the study hypotheses into families of hypotheses and to define the sequence in

which the families will be tested. Within each family of hypotheses a closed testing

procedure is used to keep the FWER at the preset alpha level. Each family serves as
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a gatekeeper to the next family in the hierarchy, allowing the analysis to continue

into the next family only if significant differences have been shown.

For example, in the rheumatoid arthritis trial we could have defined three

families of hypotheses. The primary efficacy criterion, the score on a measure of

signs, and symptoms of the disease would be included in the first family, structural

joint damage and duration of morning stiffness in the second family, and quality of

life and activities of daily living in the third family. Then, we define a testing

strategy and let us suppose that we have chosen to test each family if and only if all

the hypotheses of the preceding family had been rejected.

We first test the primary efficacy variable at the 0.05 significance level. Suppose

that the treatment effect was significant with p¼ 0.01. Since we have shown that the

treatment improves the primary objective of the treatment, it now makes sense to

look for additional benefits for the patient. We now proceed to test the second

family of hypotheses. This family will be tested with a closed testing procedure

providing strong control of the FWER at the 0.05 level, such as the Holm–

Bonferroni procedure. If both hypotheses are rejected, then the next family will be

analyzed with the same procedure at a FWER of 0.05. Otherwise, the next family

will not be analyzed and the untested null hypotheses will automatically be

accepted.

The gatekeeping procedure just described is called serial gatekeeping because

each family of null hypotheses will be tested only if all null hypotheses in the

previous family are rejected. This is illustrated in Figure 12.3. An alternative

gatekeeping procedure is parallel gatekeeping. In this case, each family of null

hypotheses will be tested if at least one null hypothesis in the previous family has

H4: quality of life 
H5: daily activities 

H2: joint damage 
H3: morning stiffness H1: S&S score 

H3: morning stiffness 
H4: quality of life 
H5: daily activities 

H1: S&S score 

H2: joint damage 

Family 1 

Family 1 

Family 2 Family 3 

Family 2 

Serial gatekeeping 

Parallel gatekeeping 

Figure 12.3 Serial and parallel gatekeeping strategies.
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been rejected (Figure 12.3), but then a multiplicity adjustment has to be introduced

to account for the previously analyzed families.

For example, suppose that the objective of the treatment of rheumatoid arthritis

was either an improvement in the score of symptoms and signs or a decrease in

structural joint damage. In that case, we could have designed a parallel gatekeeping

strategy with two families of hypotheses, the first family including the two

treatment objectives and the second family the three secondary variables. If one of

the null hypotheses in the first gatekeeper family is rejected, then the three null

hypotheses in the second family are tested at a FWER of 0.025. Otherwise, all null

hypotheses are accepted.

Tree gatekeeping is a more complex approach that combines serial and parallel

gatekeeping and also accounts for logical constraints among the multiple analyses.

Needless to say, all multiplicity adjustment methods mentioned in this section

must be fully defined in the study protocol before any data is collected and may not

be changed at analysis time.

12.6 Secondary analyses

The main efficacy analysis should be followed by a number of additional analyses.

Some of these analyses are aimed at evaluating the quality of the conduct of the

clinical trial, others at evaluating the robustness of the results of the main analysis,

and still others seek supplemental information regarding the pathophysiology of

the disease, the mechanism of action of the treatment and the patient attributes

associated with greater or lesser effectiveness of the treatment.

The adequacy of the randomization procedure is usually evaluated with the

comparison of the baseline characteristics of the subjects between treatment groups.

If heterogeneity in the distribution of the patient attributes between groups is

detected, then the adequacy of the randomization procedure may be questioned.

Clearly, with a correctly executed randomization procedure, we expect 1 out of

20 comparisons of baseline characteristics between treatment groups to result in a

statistically significant difference, and the number of false positive tests to be even

greater. However, if the observed differences are systematic, for example, if

the patient characteristics are consistently worse in one of the groups, then one

can question the adequacy of randomization, and therefore the validity of the

conclusions of the study.

Another secondary analysis consists of replication of the main analysis in

different study populations. Typically, the main analysis is repeated in the all

randomized patients population and in the per protocol population. It is commonly

accepted that the per protocol population should be used only when it comprises

at least 80% of the intention to treat population, otherwise the data may be so

much biased that any results are useless. The purpose of this analysis is to show

that the study conclusions do not depend on the selected study population. It is

expected, therefore, that the results of this analysis do not contradict those of the

main analysis.
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A third analysis, called post-stratification, consists of the comparison of the

efficacy criteria between groups, in the primary efficacy analysis population,

adjusting for important patient attributes. Important attributes are those that are, or

that may be, associated with both the efficacy criteria and the treatment groups. We

saw earlier that variables with these characteristics are called confounders.

The purpose of this analysis is to verify that any differences between groups in

the distribution of important patient attributes do not affect the results of the main

efficacy analysis. If the treatment differences shown in the main analysis disappear

when controlling for important patient characteristics, this may be an indication that

the observed differences in the main analysis could be due to confounding and,

again, this would suggest an inadequate randomization procedure and compromise

the validity of the conclusions.

We have seen in previous sections that several decisions about the methodology

of analysis must be made during the formulation of the statistical analysis plan of a

clinical trial. Therefore, when interpreting the results of the efficacy analysis of a

confirmatory clinical trial we must ask ourselves whether those decisions may have

had an influence on the results. Accordingly, sensitivity analyses may be performed

in order to test the robustness of the results by repeating the main analysis using

alternative statistical methods or models, making different assumptions on the data,

and applying different methods of imputation of missing values. Again, the results

of these analyses should not contradict the conclusions of the main analysis.

The clinical trial data may also be used to perform additional analyses of an

exploratory nature with the purpose of identifying patient factors that predict a greater

response to the treatment. The analysis of prognostic factors of treatment response

is performed only in the group of patients who received the test treatment. This infor-

mation may provide useful insights into the mechanism of action of the treatment.

With the purpose of identifying subgroups of patients with a better response

to the test treatment, subgroup analyses are often performed. Subgroup analyses

seek to identify patient variables associated with a greater response to treatment.

However, it is most inappropriate to analyze differences between treatments

separately for several subgroups defined by patient variables, because one can

almost always find some patient attribute in which a large treatment effect is seen

in one of the levels and no difference is seen is the others. Subgroup analyses must

be done by comparing the difference between treatments across levels of a patient

variable and the correct procedure is to test the interaction of each patient variable

with the treatment groups. A statistically significant interaction would suggest that

the treatment effect is different across levels of the patient variable. Subgroup

analyses are purely exploratory analyses and their results cannot be used for claims

of treatment effectiveness on a particular subpopulation of patients.

12.7 Safety analysis

To conclude, a few words are in order on the analysis of safety and tolerability. This

analysis is performed on the safety population. Unlike the primary efficacy
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population, safety is consensually defined as consisting of all subjects enrolled

in the trial, whether eligible or not, who have received at least one administra-

tion of the study medication. In contrast, there is no consensus on the methods

for the analysis of safety data. Therefore, safety data is usually presented only

descriptively.

For clinical laboratory safety data, the usual method is to prepare several

summary tables conveying different perspectives of the data. For example, the mean

value and standard deviation of each laboratory safety variable observed at each

trial visit where a safety assessment was made allow us to evaluate whether there

has been a significant variation in the average values of these parameters. A more

sensitive analysis, but more complicated to perform, consists of comparing the

mean value of each parameter at baseline to the average of the most extreme values

observed in the subsequent evaluations.

These presentations of data may suggest the existence of a treatment effect

on one or more laboratory parameters, but they are not informative of the clinical

significance of this effect. For example a decrease of, say, 5% in the average

leukocyte count does not clarify whether there has been a slight reduction in

the number of leukocytes in most individuals, or if there has been a large

reduction in a small number of individuals, and the clinical implications are

completely different.

Thus, it is convenient to count the number of subjects whose values observed in

laboratory parameters exceeded, in either direction, a specified value. Generally, the

reference value for each parameter in the specific laboratory where the test was

performed is used for this purpose. Typically, the total counts of individuals that

exceeded at least once this reference value in either direction are presented.

Additionally, the total discounting those subjects who at baseline already exceeded

the reference value should be presented, that is, the number of treatment-emergent
laboratory changes.

Safety data also includes the so-called vital signs (heart rate, systolic and

diastolic blood pressure, body temperature, and possibly body weight). The analysis

and presentation of this data are identical to those of laboratory safety parameters.

Adverse events are presented in frequency tables counting the number of

patients who presented each observed event. In oncology trials, the frequency of

each type of adverse event is usually also presented per treatment cycle. Frequency

tables are also constructed for the different types of adverse events (symptoms and

signs, intercurrent illness, worsening of a preexisting condition) and their severity

(serious and significant adverse events). Serious adverse events are those which

result in death or place patients at high risk of death; which result in hospitalization

or prolongation of hospitalization; which result in significant, persistent, or

permanent disability of a bodily function or structure, physical activity or quality of

life, or in which a medical or surgical intervention was required to prevent that

disability; and which resulted in a congenital malformation in a newborn child from

a patient exposed to the study treatments. Significant adverse events are non-serious

adverse events leading to the permanent discontinuation of the treatment and the

premature termination of the trial for a patient.
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Finally, it is customary to display a frequency table of adverse events

disaggregated by degree of severity (mild, moderate, and severe) and, in each

severity level, by causal relationship to the study treatment (not related, related) in

the investigator’s opinion.

Due to the problem of multiple comparisons, usually in none of these tables are

statistical tests presented for the comparison between treatment groups.
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13

Meta-analysis of clinical trials

13.1 Purpose of meta-analysis

Meta-analysis is a methodology for integrating information by combining the

results of several clinical trials. The term meta-analysis literally means the analysis

of analyses. Meta-analysis can be defined as the analysis and synthesis of the results

of independent studies by a systematic, explicit, and quantitative method that

takes into account all available information and which is based on a solid theoretical

statistical framework.

The most common application of meta-analysis of clinical trials is the

combination of results of inconclusive clinical trials with the purpose of increasing

the sample size and thereby conferring increased power to the statistical testing of

treatment effects. However, other important uses of meta-analysis include situations

where published clinical trials have provided contradictory results, or when a more

accurate estimate of the treatment effect needs to be obtained, or for the analysis of

particular subgroups of patients for whom the results of clinical trials have not yet

provided conclusive evidence. In essence, meta-analysis is a methodology that

seeks to draw the information needed to support clinical decisions from reports of

clinical trials found in scientific journals.

As with any other scientific project, adequate planning and the careful pre-

paration of a study protocol are essential. The most important steps in the planning

and conduct of a meta-analysis can be defined as follows: (1) a clear definition of

the research problem and a precise formulation of the objectives of the study; (2) a

definition of the inclusion and exclusion criteria of the clinical trials; (3) a

methodology for finding clinical trials; (4) a definition of the efficacy criteria;

(5) extraction of data form published clinical trials; (6) data analysis; (7) sensitivity

analyses; (8) secondary analyses; and (9) the presentation and interpretation of

the results.
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Methods for finding clinical trials include a search of bibliographic

databases, looking for papers cited by other papers already found (search by

reference), a search of public registries of clinical trials, inquiries to authors of

published clinical trials about their eventual knowledge of other authors involved

in clinical trials on the same treatments, and inquiries to pharmaceutical

companies which market the medicine in question regarding the existence of any

unpublished trials. Clinical trial results published only as abstracts of presenta-

tions at conferences are not usually considered.

Data is extracted from the retrieved reports, preferably by at least two indepen-

dent raters, and any discrepancies between raters should be solved by consensus.

The analysis methodology consists basically of the calculation of the average

treatment effect across clinical trials, that is, the average difference in efficacy

between treatment groups. In a meta-analysis that is not a simple average; it is a

weighted average takes into account a number of characteristics of the clinical trials

that we will discuss later. The first decision to be made in the analysis phase is

the definition of a measure of treatment effect that might be combined across the

various clinical trials.

13.2 Measures of treatment effect

In the case of binary efficacy variables, results are normally reported as proportions,

for example, the response rate or the proportion improved in each treatment arm.

The most commonly used measures of the treatment effect are the relative risk (the

proportion of responses in one treatment group divided by the proportion of

responses in the other group) and the odds ratio (the ratio between the proportion of

responses divided by the proportion of non-responses in one group and the

proportion of responses divided by the proportion of non-responses in the other

group). These measures are identical to those used in epidemiology and have a

number of interesting mathematical properties, but are less easily interpretable from

the clinical standpoint than the risk difference (the arithmetic difference between

the proportions of responses in the two groups), since the latter reflects the net gain

that can be expected in terms of successful outcomes. Moreover, the relative risk

and the odds ratio cannot be determined when there are no responses in the

comparison group. Nevertheless, relative risks and odds ratios express differences

between proportions better than the risk difference and are the preferred measure in

meta-analyses.

Besides these, other measures of treatment effect that can be used are the risk

reduction (one minus the reciprocal of the relative risk) and the number needed to

treat (NNT) to obtain an additional response (the reciprocal of the risk difference).

However, both these measures are difficult to treat mathematically and are usually

reserved for transforming the results of the meta-analysis into measures that

clinicians consider to have a more straightforward interpretation. For example, if the

risk difference between two treatments is, say, 10 percentage points, the NNT will

be 1/0.10¼ 100. This means that if 100 patients are treated with the test treatment,

we expect one more successful outcome than if the patients had been treated with the

control treatment.
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In the case of interval-scaled efficacy variables, one measurement of the

treatment effect is, naturally, the difference in means between treatments. However,

this measure can be used only if all clinical trials have adopted the same efficacy

criterion and it has been measured on the same scale.

However, in a meta-analysis the various clinical trials may not always have

adopted the same efficacy criterion or it may not always have been measured on

the same scale. In such cases it is therefore necessary to standardize the scale

of measurement of the efficacy variable before it can be combined across the

various trials.

A popular measure of the treatment effect which is used when the efficacy

criterion is quantitative and measured in an interval scale is the effect size of Glass,
which consists of the difference between the averages of the efficacy variable in

both groups, divided by the standard deviation of the efficacy variable in the control

group. The effect size thus expresses the differences between treatments as a

quantity that has the standard deviation as its unit. Thus, a clinical trial with an

effect size of, for example, 0.4, has an effect that is half the effect size of another

study with an effect size of 0.8.

The standardization of treatment effects by dividing by the standard deviation of

the controls does not have much support when comparing two active treatments. In

this situation it is preferable to use the method of Cohen, which defines the effect

size as the difference between group means divided by the combined estimate of the

standard deviation computed from the standard deviations of the two groups. This

measure is often called the standardized mean difference.

For efficacy criteria measured on ordinal scales, the measure of the treatment

effect relies heavily on the data provided by the authors of the publications. If the

results have been expressed as means and standard deviations, and the scale has a

large range of values, the usual practice is to analyze the data as if it was an interval

scale. If the efficacy variable was measured on a scale with a small range of values

and the authors have presented the distribution of individuals by each value of the

scale, the usual procedure is to dichotomize the efficacy variable and to use one of

the measures mentioned above for proportions.

In clinical trials where the efficacy criterion was the time to an event, the

measurement of treatment effects is usually by the hazard ratio.

13.3 The inverse variance method

As mentioned above, meta-analysis is based on a weighted average of the treatment

effects. The weighting is intended to differentiate the contribution of the several

clinical trials to the average treatment effect, giving more weight to the estimates of

treatment differences obtained in the clinical trials that have greater precision.

The weighting method is a general method of analysis that is used when we

wish to test differences among several means. This method can be used both when

we have individual data and when we only have aggregate data. Hence it is

particularly suited to the case of meta-analysis where, in most situations, we have

access only to aggregate data.
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When the treatment effect is measured on an interval scale and the results

observed in clinical trials are homogeneous, we may estimate the true value of the

difference between treatments using a weighted average of the observed differ-

ences, the weights being the reciprocal of the squared standard errors.

This method, called the inverse variance method, gives us a weighted estimate

of the true treatment effect, its confidence interval, and a test of homogeneity of

treatment effects across trials. However, those estimates and their confidence

intervals are valid only on the condition that treatment differences across clinical

trial are homogeneous. In the next section we will discuss methods that are adequate

when clinical trial results are heterogeneous.

The principle of weighting seems to make sense, but leaves two questions open.

First, which weighting factor should be used? Second, does the use of a weighting

factor improve the combined estimate of the difference between treatments?

In a meta-analysis, we are analyzing several variables (the differences

between treatments observed in the clinical trials) whose values are differences

between sample means. Each of these variables has a different variance

(squared standard error) because the sample sizes are not equal in all clinical

trials. We also know that the values of those variables correspond to differences

between means of independent samples, and thus have a normal distribution

if the samples sizes are large. As clinical trials almost always have at least

20 patients in each group, this assumption usually holds.

Under the null hypothesis of equality of the differences between treatments

across all the clinical trials, that is, of homogeneity of the differences between

treatments in the populations, all the observed treatment differences estimate

the same quantity, which is the true value of the difference between treatments.

We can test this null hypothesis by evaluating whether the spread of the values

of the observed differences around the true treatment difference is within or

larger than expected from normal sampling variation.

To this end, we might proceed as we usually do when we want to quantify

the dispersion of values about their mean: that is, we would compute the

squared difference of each observation to the true mean and sum all the results.

But since the observed differences were obtained from clinical trials of

different sample sizes and, therefore, have different variances, we must first

standardize by dividing each squared difference by the respective variance

(squared standard error). Accordingly, this is equivalent to a sum of squares

weighted by the inverse variance and is obtained with

wSSq ¼
X ðdi � mÞ2

SE2
i

where di is the observed difference between treatments, m is the true difference

between treatments and SEi the standard error of the difference in the ith

clinical trial.
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Under the null hypothesis of homogeneity of treatment differences across

clinical trials, the sum of the squared differences of each observed treatment

effect to the true treatment effect divided by their respective variance has a

chi-square distribution with degrees of freedom equal to the number of

observations. We know this because, when we subtract the mean from a

random variable with a normal distribution and divide the result by the standard

deviation, we will get a standardized normal deviate, and the sum of n squared

standardized normal deviates has a chi-square distribution with n degrees of

freedom.

At this moment we cannot yet test the null hypothesis of homogeneity of

the differences across clinical trials because we do not know the true value m of

the difference between treatments. We can, however, replace that value by the

average of all the observed differences between treatments.

However, for the calculation of this average we will weight the observed

differences by the same factor as before, i.e., the inverse variance. If treatment

effects are homogeneous, this weighted mean is the best estimator of the true

difference between treatments, because no other has lower variance. Therefore,

we obtain the value of the mean treatment difference by summing the product

of each observed difference by its weight and dividing the result by the sum of

all weights. We may represent this by

D ¼
P

widiP
wi

where wi¼ 1/SE2
i.

Finally, we need only to know the variance of each observed difference.

We have seen already that the estimate of the standard error obtained from

the observed data is quite accurate. Therefore, we may use the square of the

standard error estimated from the data as a good approximation to the true

value of the variance of the observed differences.

The quantity resulting from the sum of squared differences of the

observed treatment effects to their weighted average, each one divided by

the respective variance, now has a chi-square distribution with degrees of

freedom equal to the number of clinical trials minus one, since we have

used our data for the estimation of the true value of the difference between

treatments, therefore losing 1 degree of freedom. High values of this result

provided evidence against the null hypothesis of homogeneity of the

treatment effect across trials.

If the null hypothesis is not rejected we have no evidence for the

heterogeneity of treatment differences across clinical trials and we can obtain

an estimate of the true value of the difference between treatments from the

weighted average of the observed differences between treatments, as shown

above. Still, under H0, the variance of the weighted average is the reciprocal of

the sum of the weights and its standard error is the square root of this quantity.

This allows us to obtain confidence intervals using the normal distribution.
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Thus, the 95% confidence limits are

D� 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=

X
wi

q

The inverse variance method can be used whenever the measures of the

treatment effect are interval scaled (difference between means, effect size, or

standardized mean difference). It can also be used when the measure of the

treatment effect is the odds ratio, the risk ratio, or the incidence rate ratio, applying

the same method to the logarithmic transformation of those quantities.

However, the preferred method for binary efficacy variables in the absence

of heterogeneity appears to be the Mantel–Haenszel method. For this test it

is necessary to obtain the total of subjects in each treatment group and the

total with a response to the treatment. The Mantel–Haenszel method is

equivalent to a logistic regression where the dependent variable is the efficacy

variable and the independent variables are a set of dummy variables encoding

the different clinical trials and a binary variable encoding the treatment group.

The exponential of the coefficient of this latter variable is approximately the

meta-analytic estimate of the odds ratio.

13.4 The random effects model

The method discussed in the previous section assumes that each clinical trial

represents a measurement of the true treatment difference and that the results

obtained in the several clinical trials differ only because of sampling variation. As

the error due to sampling variation is random, if we combine the differences

between treatments that were observed in several clinical trials we will obtain

unbiased estimates of the true treatment difference. This scenario corresponds to the

so-called fixed effects model.

Sometimes, however, we suspect that such an assumption does not hold because

of obvious differences in treatment effects across the clinical trials, that is, there is

heterogeneity of the results. In this situation, the differences between clinical trial

results cannot be explained solely by sampling variation. There must also exist an

unexplained variation, presumably due to systematic differences between the

characteristics of the trials, such as the eligible population, duration of treatment,

local conditions of trial administration, and so forth. This variation manifests itself

as random variation superimposed on sampling variance and, if it can be quantified,

we can take it into account when we calculate the precision of the estimate of the

true treatment effect.

This scenario corresponds to the so-called random effects model. This model is

therefore appropriate in the presence of heterogeneity. Unlike the fixed effects

model, which when wrongly assumed will produce erroneous estimates of the

treatment effect, the wrong specification of the random effects model entails only a

lesser accuracy of the estimated treatment effect. Accordingly, the random effects
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model will be less likely to demonstrate a statistically significant effect. In other

words, when the wrong model is applied the fixed effects model is subject to bias,

whereas the random effects model is too conservative.

The most commonly used method in the presence of heterogeneity is the

DerSimonian–Laird method, which can be applied to any type of measurement of

the treatment effect. This method produces an estimate of the variance between

clinical trial results and the weighting factor is the reciprocal of the sum of the

between-trials variance with the variance of each trial.

The homogeneity test described in the previous section largely determines the

model that should be adopted. A significant result is indicative of heterogeneity and

the random effects model and the DerSimonian–Laird method should be selected

for an estimation of the true treatment effect. A non-significant result, however,

does not confirm the hypothesis of homogeneity, even more so because the

homogeneity test is notoriously underpowered. In the next section we will discuss

additional methods for identifying heterogeneity.

13.5 Heterogeneity

The identification of heterogeneity is of considerable importance because when it

exists and is disregarded it may lead to invalid conclusions, while if it does not exist

but is considered it may lead to inconclusive results. The test of heterogeneity has

low statistical power and a non-significant result by no means excludes the

possibility of heterogeneity. For this reason, methods have been introduced for the

visual identification of heterogeneity.

An often used method, applicable when the efficacy variable is binary, is the

L’Abb�e plot, which is a scatterplot of the proportion of responses observed in each

treatment group for each clinical trial. Figure 13.1 shows examples of L’Abb�e plots.
The solid diagonal line represents the equality of treatment effects, the dashed line

represents the meta-analytical estimate of the treatment effect, and each circle

represents a clinical trial. In Figure 13.1, the measure of treatment effect is the risk

difference.

In the absence of heterogeneity, it is expected that the circles corresponding to

the clinical trials will be located along a straight line, as in Figure 13.1a, and

heterogeneity is suggested if some trials depart considerably from that line, as in

Figure 13.1b.

The L’Abb�e plot also provides an indication of the best measure of treatment

effect. In situations where the response rate is very low in one of the treatment groups,

clinical trials can be heterogeneous with one measure of the effect (e.g., the risk

difference) and homogeneous with another measure (e.g., relative risk), and the

L’Abb�e plot provides a visual indication of such a situation. For example, the dotted

line in the graph of Figure 13.1b is the meta-analytical estimate of the treatment effect

based on relative risks and, with this measure, the results appear to be homogeneous.

Another method for investigating heterogeneity is the Galbraith plot. This

method consists of a scatterplot of the test statistic of the difference between
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treatments in each trial (the treatment difference divided by its standard error)

against a measure of the precision of the trial (the inverse of the standard error of

the treatment difference). A least squares line through the origin will have a slope

equal to the estimate of the treatment effect from a fixed effects meta-analysis, and

the vertical distance of each trial to the regression line will give an indication of the

contribution of the trial to the statistic of homogeneity (Figure 13.2). In the absence

of heterogeneity we expect that 95% of the difference between treatments, in the

observed clinical trials, are within two standard errors of the true treatment effect.

This region is represented by the dashed lines in Figure 13.2. Clinical trials outside
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Figure 13.2 Galbraith plot for the detection of heterogeneity.
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this region are trials that make a significant contribution to the statistic of

homogeneity. The second largest trial (open circle) makes an important contribution

to the statistic of homogeneity. In this situation, a meta-analysis with a random

effects model would be more appropriate.

The investigation of the source of heterogeneity may provide interesting

indications about what factors influence the treatment effect, which is analogous to

a subgroup analysis in clinical trials. This investigation can be carried out visually

with Galbraith plots, labeling each point on the graph according to the trial

characteristics (e.g., type of trial, treatment duration, medication dose), or by using

formal statistical methods. For example, we can extend the principle of the

Galbraith plot and use linear regression to analyze the extent to which one or more

factors may explain the heterogeneity of treatment effects.

13.6 Publication bias

Another issue that may compromise the validity of a meta-analysis is the possibility

that the assumptions of the method are not met due to a particular type of clinical

trial having systematically been excluded from publication. Both the fixed effects

and the random effects models are based on the assumption that the observed

clinical trials represent a random sample from a population of clinical trials, and if a

particular type of clinical trial is systematically excluded from the sample, the

results of the meta-analysis will almost certainly be biased.

Apparently, the most frequent reason for this publication bias is simply

because the authors of a clinical trial are not as committed to publishing the results

of a trial showing no significant differences as they are to ‘positive’ trials. Another

important reason for publication bias is the greater likelihood of rejection of

negative studies by editors of scientific journals.

In addition, other causes of bias have been noted. Some examples are citation

bias (frequently cited trials have a greater probability of being selected for a meta-

analysis), location bias (clinical trials conducted in developing countries have a

lower probability of being published), English language bias (clinical trials

published in English have a greater probability of being selected), multiple

publication bias (clinical trials that have been published several times in different

journals have a greater probability of being selected), and confirmation bias (the

preferential rejection by reviewers of scientific journals of manuscripts presenting

results that are contrary to their beliefs or to mainstream opinion).

The only way of minimizing publication bias is to ask potential authors of

clinical trials about any unpublished results, a task that can be aided by querying

public registries of planned and ongoing clinical trials. As this is a long and

laborious undertaking, a number of statistical methods designed to detect the

presence of publication bias have been developed.

One of the first approaches for detecting the eventuality of publication bias was

the funnel plot (Figure 13.3). This method assumes that, since all clinical trials in a

meta-analysis are estimating the same and unknown true difference between
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treatments, the treatment effects observed in the individual trials should be

distributed about the true treatment effect and their dispersion should be

proportional to their variances.

In other words, in a scatterplot of the treatment effect versus the accuracy of the

trials, it is expected that small-sized clinical trials will have widely dispersed

treatment effects around the average effect and that the dispersion of effect sizes

decreases as the precision (sample size or inverse variance of the treatment

difference) of the trial increases. Hence the designation of funnel plot. The

existence of publication bias is suspected by an asymmetry of the funnel plot,

particularly by the absence of trials in the bottom right part of the graph (as shown

in Figure 13.3), since that region corresponds to small-sized clinical trials with

inconclusive results, precisely those clinical trials that are less likely to be

considered for publication by scientific journals or even to be submitted for

publication.

Because the interpretation of the funnel plot is essentially subjective, formal

statistical tests have been proposed for the identification of publication bias. Begg’s

test is based on the observation that the presence of publication bias induces an

asymmetry in the funnel plot and thus a correlation between the treatment effects

and the precision of the trial will be evident (Figure 13.4a and b). Consequently,

Begg’s test assesses the significance of Kendall’s correlation coefficient between

treatment effects and their variances. In the presence of publication bias, this

correlation will be statistically significant (Figure 13.4b).

Another test which seems to have greater power than the previous test is

Egger’s test. This test detects an asymmetry in the funnel plot through a linear

regression of the treatment effect, standardized by division by its standard error, on

the precision of the clinical trial (approximately equivalent to the sample size). The

standardized treatment effect, as we saw above, corresponds to the statistic of the
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Figure 13.3 Funnel plot for the identification of publication bias: solid line, meta-

analytical estimate of the treatment effect; dashed lines, 95% confidence limits.
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test of a difference between treatments. Egger’s test is based on the observation that,

in the absence of publication bias, if a difference between treatments truly exists

then small-sized trials will have low precision (nearing zero) and a small test

statistic (no significant difference), whereas large clinical trials will have high

precision and a large value of the test statistic (statistically significant difference).

Consequently, a regression line of the test statistic on the precision of the trial

should pass through the origin (Figure 13.5 a).

In situations of publication bias, one would expect an absence of clinical trials

in the region of small test statistics and low precision (small inconclusive trials), but

not in the region of large test statistics and low precision (small trials showing

statistical differences between treatments). Consequently, the regression line will be

shifted from the origin (Figure 13.5b). Egger’s test consists of testing whether the

intersection of the regression line is significantly different from zero. The results

of these two tests should be interpreted with caution, because of their notorious

low power.
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Figure 13.4 Begg’s test: (a) absence of publication bias; (b) presence of

publication bias.
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Figure 13.5 Egger’s test: (a) absence of publication bias; (b) presence of

publication bias.
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13.7 Presentation of results

The results of a meta-analysis are usually presented in a graphical form known as a

forest plot (Figure 13.6).
In a forest plot the vertical axis corresponds to the different clinical trials and

the horizontal axis to the treatment effect, with a vertical line drawn at 0 (no

difference between treatments) or 1 if the measure of treatment effect is the relative

risk, odds ratio, or hazard ratio. Each clinical trial, referenced on the left by the

main author and the publication year, is represented by the point estimate of the

treatment effect and the 95% confidence interval. The corresponding numerical

values are presented in the right column and the next column displays the weight

given to each trial for the calculation of the meta-analytical estimate. The weighting

is depicted visually by the size of the symbol of the point estimate of the difference

between treatments, whose area is proportional to its weight. The meta-analytical

estimate and the respective 95% confidence interval are represented by a diamond

at the bottom of the graph.

From the above discussion of the methodology of meta-analysis it should be

clear that a number of aspects must be considered in the interpretation of the results.

When clinical trials have identical designs, the same eligibility criteria, and the

same efficacy criteria, and their results are clearly homogeneous, then the fixed

effects model is likely to be adequate and the meta-analytical estimates and their

confidence intervals will be reliable, provided that publication bias can be assumed
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Figure 13.6 Forest plot presenting the results of a meta-analysis.
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to be absent or minimal. Unfortunately these conditions are not often met and more

commonly a meta-analysis is performed in situations where clinical trials have

different eligibility criteria, study designs, medication doses, length of observation,

or efficacy variables, and the treatment effects are heterogeneous. A random effects

model may be used in these cases, but this method assumes that the observed

clinical trials are a representative sample of all the trials that can be conducted for

that therapeutic condition and that treatment, and this is, of course, a very strong

assumption. In both cases the possibility of publication bias is worrisome and no

effort should be spared in the search for published and unpublished trials.

The robustness of the results may be evaluated with sensitivity analyses, by

repeating the meta-analysis for different subsets of clinical trials (e.g., only for large

trials, or only for high-quality trials) and using the alternative model. The results of

sensitivity analyses should not contradict the conclusions of the main analysis,

otherwise this will be an indication that the assumptions of the method do not hold.

Despite its limitations, meta-analysis remains an extremely important metho-

dology for the formation of an informed and objective opinion about the available

information on existing treatment modalities.
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Person-years method, 80

Pharmacoeconomics, 255
Pharmacoepidemiology, 255
Pharmacovigilance, 255
Phases of clinical development of drugs, 278

Placebo, 266
effect, 266

Point estimate, 59

Poisson distribution, 163
Poisson regression, 166
Population at risk, 77

Population standard deviation, 41
Population, 2, 4

conceptual definition, 4, 255
operational definition, 4, 255

Post-stratification, 308
Power, 136
Predictive value positive/negative, 215

Prevalence study, 77
Prevalence, 77

rate, 77

Primary sampling unit, 66, 77
Probability density function, 32
Probability distribution, 26, 29

of sample means, 38
of sample proportions, 54
of variance ratios, 125

Probability sampling, 65

Product-limit estimate, 157
Prognostic factor, 212
of treatment response, 308

Projection of estimates, 84
Promax rotation, 237
Proportional hazards model, 219–223

Proportional stratified sampling, 72
Proportionality assumption, 223–225
Proportions

confidence interval for, 57
exact confidence limits for, 56
inference from, 55–58
variance of, 53

Prospective study, 64, 89
Protocol
deviations, 296

of clinical trial, 291
structure, 291
violations, 297

PSU, 66, 77
p-value, 111
nominal, 285

Quadratic term, 200
Qualitative studies, 5
Quartiles, 21

R2, 179, 185
pseudo, 210

Ramsey RESET test, 189
Random effects, 303
Random variable, 26, 29

Randomization
blocked, 268
concealed, 270
dynamic, 272

list, 270
minimization, 272
permuted blocks, 269

simple, 268
stratified, 270
unbalanced, 269

Range, 21
Regression
assumptions, 178, 191

coefficient test, 179
coefficient, 174
constant, 174
curvilinear, 200
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diagnostics, 188–191
equality of slopes, 199
line, 170

linear, 169–184
logistic, 201–219
multiple, 185–188

nonlinear, 199–201
partial coefficient, 185
polynomial, 200

selection of variables, 192
slope, 171
stepwise, 193
sum of squares due to, 182

to the mean, 259
Rejection region, 109
Relative death rate, 161

Relative risk, 101
Reliability, 239
internal consistency, 240–245

test-retest, 245
Residual, 175
analysis of, 188

mean square, 177, 181
plot, 189

Retrospective study, 64, 89
Risk

attributable, 102
difference, 312
population at, 77

ratio, 101
reduction, 312
stratification, 212

Robust, 98
ROC curve, 215
area under the, 216

Root mean square error, 184

Sample size estimation, 59, 273
for clinical trials, 273

for differences in means, 136
for differences in proportions, 138
for hazard ratios, 274

for means, 69
for non-inferiority trials, 280
for one-sample tests, 283

for proportions, 60, 69
for sampling without replacement, 69
for stratified sampling, 74
unbalanced, 139

Sample, 3
mean, 25
representativeness, 6

standard deviation, 41
Sampling, 3, 6–13, 64–77
cluster, 74

combined, 76
consecutive random, 66, 256
convenience, 65, 91, 256

distributions, 37–39
fraction, 66
frame, 66
multistage, 74–77

non-probability, 65, 81, 91
probability, 65
proportional stratified, 72

simple random, 66
stratified, 70
stratified with optimal allocation, 73

systematic random, 66
variation, 38
with replacement, 67

without replacement, 67
Scale transformation
logarithmic, 142
rank, 145

reciprocal, 142
square-root, 142

Scales of measurement, 15–18

binary, 15, 53
categorical, 16
counts, 17

interval, 17
nominal, 16
ordinal, 16
ratio, 17

Scatterplot, 169
Schoenfeld method, 275
Scree plot, 234

Screening instrument, 78
Search by reference, 312
Selection bias, 256, 262

Sensitivity, 136, 213
of clinical questionnaires, 252

Set

risk, 222
testing, 217
training, 216
validation, 218
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Shapiro–Wilk test, 189
Sign test, 150
Simple random sampling, 66

Simpson’s rule, 277
Slope, 171
SMR, 85

Spearman’s correlation coefficient, 245
Specific rate, 82
Specificity, 135, 213

Standard
error of the measurement, 274
normal deviate, 34, 40
normal variable, 40

Standard deviation, 23
population, 24
sample, 24

Standard error
of difference in means, 94, 97
of difference in paired samples, 149

of difference in proportions, 100
of incidence density, 165
of survival probability, 157

of the incidence rate ratio, 166
of the mean, 40–42
of the regression coefficient, 175–177
value of, 42

Standardization, 82–85
direct, 82
indirect, 84

Standardized mean difference, 313
Standardized mortality rate, 85
STATA, 183

Statistical table, 34
of the binomial distribution, 58
of the chi-square distribution, 122
of the F distribution, 129

of the normal distribution, 34–36
of the t distribution, 51

Statistical tests

one-sided, 132–135
rationale, 107
two-sided, 132

Stochastic curtailment, 290
Strata, 70
Stratified sampling, 70

with optimal allocation, 73
Strong control of the FWER, 304
Student’s t distribution, 48–51
Student’s t test, 112–115

in non-inferiority trials, 280
one-sample, 283
one-sided, 133

Study design, 4–6
Subgroup analysis, 308
Sum of squares, 23

between-groups, 127
partition of, 127
within-group, 127

Surrogate criterion, 257
Survival-time analysis, 152
Survivor function, 154, 157
Systematic random sampling, 66

t test, 112–115
in crossover clinical trials, 264

in non-inferiority trials, 280
of the slope of a regression
line, 179

one-sample, 283
one-sided, 133

Table

cell, 117
classification, 212
contingency, 117, 248
grand total, 117

marginal total, 117
Tabulation, 18–19
Test

false negative rate, 135, 214
false positive rate, 135, 214
sensitivity, 136, 213

specificity, 135, 213
true negative rate, 135, 213
true positive rate, 136, 213

Test–retest, 245

Treatment-emergent, 308
True negative/positive rate, 135,

136, 213

Tukey’s test, 141
Type I error, 135
Type II error, 135

Uniform distribution, 26
Uniqueness, 235

Validity, 251
concurrent, 252
construct, 251
content, 251
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convergent, 252
criterion, 252
discriminant, 252

Variance, 23
between-groups, 126
of incidence density, 165

of the logarithmof incidencedensity, 165
population, 25, 42
ratio, 125, 181

residual, 125
sample, 25, 42
total, 124

within-group, 125
Varimax rotation, 236
Visual analogic scale, 17

Weighting, 314–316
Wilcoxon rank-sum test, 143–145

Wilcoxon signed-rank test, 149

Yates’ continuity correction, 122

z-score, 238
z-test, 108–110
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